• Title/Summary/Keyword: Absolute nodal coordinate formulation

Search Result 27, Processing Time 0.03 seconds

Development and Verification of a Dynamic Analysis Model for the Current-Collection Performance of High-Speed Trains Using the Absolute Nodal Coordinate Formulation (절대절점좌표를 이용한 고속철도 집전성능 동역학 해석 모델 개발 및 검증)

  • Lee, Jin-Hee;Park, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.3
    • /
    • pp.339-346
    • /
    • 2012
  • The pre-evaluation of the current-collection performance is an important issue for high-speed railway vehicles. In this paper, using flexible multibody dynamic analysis techniques, a simulation model of the dynamic interaction between the catenary and pantograph is developed. In the analysis model, the pantograph is modeled as a rigid body, and the catenary wire is developed using the absolute nodal coordinate formulation, which can analyze large deformable parts effectively. Moreover, for the representation of the dynamic interaction between these parts, their relative motions are constrained by a sliding joint. Using this analysis model, the contact force and loss of contact can be calculated for a given vehicle speed. The results are evaluated by EN 50318, which is the international standard with regard to analysis model validation. This analysis model may contribute to the evaluation of high-speed railway vehicles that are under development.

Dynamic Analysis of a Very Flexible Cable Carrying A Moving Multibody System (다물체 시스템이 이동하는 유연한 케이블의 동역학 해석에 관한 연구)

  • 서종휘;정일호;한형석;박태원
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.2
    • /
    • pp.150-156
    • /
    • 2004
  • In this paper, the dynamic behavior of a very flexible cable due to moving multibody system along its length is presented. The very deformable motion of a cable is presented using absolute nodal coordinate formulation, which is based on the finite element procedures and the general continuum mechanics theory to represent the elastic forces. Formulation for the sliding joint between a very flexible beam and a rigid body is derived. In order to formulate the constraint equations of this joint, a non-generalized coordinate, which has no inertia or forces associated with this coordinate, is used. The modeling of this sliding joint is very important to many mechanical applications such as the ski lifts. cable cars, and pulley systems. A multibody system moves along an elastic cable using this sliding joint. A numerical example is shownusing the developed analysis program for flexible multibody systems that include a large deformable cable.

Non-Dimensional Analysis of a Two-Dimensional Beam Using Linear Stiffness Matrix in Absolute Nodal Coordinate Formulation (절대절점좌표계에서 선형 강성행렬을 활용한 2차원 보의 무차원 해석)

  • Kim, Kun Woo;Lee, Jae Wook;Jang, Jin Seok;Oh, Joo Young;Kang, Ji Heon;Kim, Hyung Ryul;Yoo, Wan Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.1
    • /
    • pp.31-40
    • /
    • 2017
  • Absolute nodal coordinate formulation was developed in the mid-1990s, and is used in the flexible dynamic analysis. In the process of deriving the equation of motion, if the order of polynomial referring to the displacement field increases, then the degrees of freedom increase, as well as the analysis time increases. Therefore, in this study, the primary objective was to reduce the analysis time by transforming the dimensional equation of motion to a non-dimensional equation of motion. After the shape function was rearranged to be non-dimensional and the nodal coordinate was rearranged to be in length dimension, the non-dimensional mass matrix, stiffness matrix, and conservative force was derived from the non-dimensional variables. The verification and efficiency of this non-dimensional equation of motion was performed using two examples; cantilever beam which has the exact solution about static deflection and flexible pendulum.

Nonlinear Dynamic Analysis of a Large Deformable Beam Using Absolute Nodal Coordinates

  • Jong-Hwi;Il-Ho;Tae-Won
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.4
    • /
    • pp.50-60
    • /
    • 2004
  • A very flexible beam can be used to model various types of continuous mechanical parts such as cables and wires. In this paper, the dynamic properties of a very flexible beam, included in a multibody system, are analyzed using absolute nodal coordinates formulation, which is based on finite element procedures, and the general continuum mechanics theory to represent the elastic forces. In order to consider the dynamic interaction between a continuous large deformable beam and a rigid multibody system, a combined system equations of motion is derived by adopting absolute nodal coordinates and rigid body coordinates. Using the derived system equation, a computation method for the dynamic stress during flexible multibody simulation is presented based on Euler-Bernoulli beam theory, and its reliability is verified by a commercial program NASTRAN. This method is significant in that the structural and multibody dynamics models can be unified into one numerical system. In addition, to analyze a multibody system including a very flexible beam, formulations for the sliding joint between a very deformable beam and a rigid body are derived using a non-generalized coordinate, which has no inertia or forces associated with it. In particular, a very flexible catenary cable on which a multibody system moves along its length is presented as a numerical example.

A Relative for Finite Element Nonlinear Structural Analysis (상대절점좌표를 이용한 비선형 유한요소해석법)

  • Kang, Ki-Rang;Cho, Heui-Je;Bae, Dae-Sung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.788-791
    • /
    • 2005
  • Nodal displacements are referred to the Initial configuration in the total Lagrangian formulation and to the last converged configuration in the updated Lagrangian formulation. This research proposes a relative nodal displacement method to represent the position and orientation for a node in truss structures. Since the proposed method measures the relative nodal displacements relative to its adjacent nodal reference frame, they are still small for a truss structure undergoing large deformations for the small size elements. As a consequence, element formulations developed under the small deformation assumption are still valid fer structures undergoing large deformations, which significantly simplifies the equations of equilibrium. A structural system is represented by a graph to systematically develop the governing equations of equilibrium for general systems. A node and an element are represented by a node and an edge in graph representation, respectively. Closed loops are opened to form a spanning tree by cutting edges. Two computational sequences are defined in the graph representation. One is the forward path sequence that is used to recover the Cartesian nodal displacements from relative nodal displacements and traverses a graph from the base node towards the terminal nodes. The other is the backward path sequence that is used to recover the nodal forces in the relative coordinate system from the known nodal forces in the absolute coordinate system and traverses from the terminal nodes towards the base node. One closed loop structure undergoing large deformations is analyzed to demonstrate the efficiency and validity of the proposed method.

  • PDF

A Relative Nodal Displacement Method for Element Nonlinear Analysis (상대 절점 변위를 이용한 비선형 유한 요소 해석법)

  • Kim Wan Goo;Bae Dae sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.4 s.235
    • /
    • pp.534-539
    • /
    • 2005
  • Nodal displacements are referred to the initial configuration in the total Lagrangian formulation and to the last converged configuration in the updated Lagrangian furmulation. This research proposes a relative nodal displacement method to represent the position and orientation for a node in truss structures. Since the proposed method measures the relative nodal displacements relative to its adjacent nodal reference frame, they are still small for a truss structure undergoing large deformations for the small size elements. As a consequence, element formulations developed under the small deformation assumption are still valid for structures undergoing large deformations, which significantly simplifies the equations of equilibrium. A structural system is represented by a graph to systematically develop the governing equations of equilibrium for general systems. A node and an element are represented by a node and an edge in graph representation, respectively. Closed loops are opened to form a spanning tree by cutting edges. Two computational sequences are defined in the graph representation. One is the forward path sequence that is used to recover the Cartesian nodal displacements from relative nodal displacement sand traverses a graph from the base node towards the terminal nodes. The other is the backward path sequence that is used to recover the nodal forces in the relative coordinate system from the known nodal forces in the absolute coordinate system and traverses from the terminal nodes towards the base node. One open loop and one closed loop structure undergoing large deformations are analyzed to demonstrate the efficiency and validity of the proposed method.

Nonlinear Analysis of Beam Using Linear Finite Element Method and Dynamic Analysis (선형 유한요소법과 동역학을 연계한 보의 비선형 거동 해석)

  • Jang, Sung-Hee;Lee, Seoung-Soo;Kim, Chang-Wan
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.754-755
    • /
    • 2010
  • 본 논문에서는 선형 유한요소법과 동역학적 해석방법을 연계하여 유연 다물체 보의 거동을 해석하였다. 이 방법은 절대 절점 좌표계를 사용하였고, 몇 가지 수치 예제를 해석해 본 논문에서 설명하는 선형 유한 요소법과 동역학적 연계 해석방법의 타당함을 확인하였다.

  • PDF

FSI Analysis of Structure Using Recursive Component Mode Synthesis (재귀 부분 합성법을 이용한 구조물 유체-고체 연성 해석)

  • Kim, Chang-Wan
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.215-216
    • /
    • 2010
  • 본 논문에서는 재귀 부분 구조 합성법을 이용하여 유체와 고체가 연성된 구조물에 대한 거동을 해석하였다. 이 방법은 일반적으로 널리 사용하는 랜쵸스 방법과 비교하여 몇 배나 빠른 계산 결과 시간에 문제를 풀었음에도 거의 동일한 해를 얻을 수 있는 장점이 있다.

  • PDF

Behavior of Flexible Hose Connected to Mother Ship (모함에 연결된 탄성 호스의 거동)

  • Kim, Kun-Woo;Lee, Jae-Wook;Kim, Hyung-Ryul;Yoo, Wan-Suk;An, Deuk-Man
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.3
    • /
    • pp.235-240
    • /
    • 2011
  • A flexible hose attached to a mother ship experiences various motions that depend on the movement of the mother ship and that of underwater vehicle. Although the motion of the hose is a very important factor that determines how a mother ship should be steered in a real situation, it is difficult to experimentally obtain information about the hose motion. Therefore, we study the motion of the hose analytically. The ANCF(absolute nodal coordinate formulation) was used to model the hose, because this formulation can relax the Euler-Bernoulli theory and the Timoshenko beam theory and allow the deformation of the cross section. The mother ship is assumed to be a rigid body with 6 degrees of freedom. The motion of the hose is predominantly affected by the behavior of the mother ship and by the fluid flow.

Dynamic Analysis of a Pantograph-Catenary System for High-Speed Train(I. Modeling and Analysis of a Catenary System) (고속전철 집전시스템의 동역학 해석에 관한 연구(I. 가선계의 모델링 및 해석))

  • Seo Jong-Hwi;Jung Il-Ho;Park Tae-Won;Mok Jin-Yong;Kim Young-Guk;Kim Seok-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.1
    • /
    • pp.152-159
    • /
    • 2005
  • The dynamic properties between catenary and pantograph of high-speed train are very important factors to affect the stable electric power supply. So as to design the reliable current collection system, a multibody simulation model is needed. In this paper, the dynamic analysis method for a pantograph-catenary cable system of high-speed train is presented. The very deformable motion of a catenary cable is demonstrated using nonlinear continuous beam theory, which is based on an absolute nodal coordinate formulation, and the pantograph is modeled as a rigid multibody. The proposed method might be very efficient, because this method can present the nonlinear properties of a flexible catenary cable and set a various boundary conditions.