• Title/Summary/Keyword: Abiotic and biotic factors

검색결과 89건 처리시간 0.024초

A Molecular Switch for the Induction of Resveratrol Biosynthesis in Grapes

  • Lee, Mi-Sook;Pyee, Jae-Ho
    • Natural Product Sciences
    • /
    • 제10권5호
    • /
    • pp.248-251
    • /
    • 2004
  • Resveratrol has been reported to possess a variety of biological and pharmaceutical activities. Regardless of its beneficial effects on health, the amount of resveratrol in grapes is very low. In order to induce the resveratrol biosynthesis, the promoter region of a genomic fragment encoding the resveratrol synthase was isolated and a molecular switch was identified which provides us with defining biotic or abiotic inducers that transcriptionally up-regulate the gene expression involved in the resveratrol biosynthesis. We could successfully increase the amount of resveratrol in grapes up to 3-fold by using these environmental factors.

Isolation of Multi-Abiotic Stress Response Genes to Generate Global Warming Defense Forage Crops

  • Ermawati, Netty;Hong, Jong Chan;Son, Daeyoung;Cha, Joon-Yung
    • 한국초지조사료학회지
    • /
    • 제41권4호
    • /
    • pp.242-249
    • /
    • 2021
  • Forage crop management is severely challenged by global warming-induced climate changes representing diverse a/biotic stresses. Thus, screening of valuable genetic resources would be applied to develop stress-tolerant forage crops. We isolated two NAC (NAM, ATAF1, ATAF2, CUC2) transcription factors (ANAC032 and ANAC083) transcriptionally activated by multi-abiotic stresses (salt, drought, and cold stresses) from Arabidopsis by microarray analysis. The NAC family is one of the most prominent transcription factor families in plants and functions in various biological processes. The enhanced expressions of two ANACs by multi-abiotic stresses were validated by quantitative RT-PCR analysis. We also confirmed that both ANACs were localized in the nucleus, suggesting that ANAC032 and ANAC083 act as transcription factors to regulate the expression of downstream target genes. Promoter activities of ANAC032 and ANAC083 through histochemical GUS staining again suggested that various abiotic stresses strongly drive both ANACs expressions. Our data suggest that ANAC032 and ANAC083 would be valuable genetic candidates for breeding multi-abiotic stress-tolerant forage crops via the genetic modification of a single gene.

개비자나무의 homoharringtonine 함량에 영향을 미치는 생물 및 무생물적 환경인자 (Biotic and Abiotic Factors Affecting Homoharringtonine Contents of Cephalotaxus koreana Nakai)

  • 정명석;현정오;이욱;백을선
    • 한국자원식물학회지
    • /
    • 제23권2호
    • /
    • pp.172-178
    • /
    • 2010
  • 천연집단에 서식하는 개비자나무 개체들을 이용해 무생물 및 생물적 환경인자가homoharringtonine(HHT) 함량에 미치는 영향을 조사하여 향후 항암제 가능성이 있는 HHT의 고부가가치 산업적인 생산이 기대되는 연구에 기초자료를 제공하고자 본 연구를 수행하였다. 무생물적 환경인자(토양습도, 토양pH, 서식밀도, 기온)와 HHT 함량과의 상관관계에 있어 HHT 는 토양습도(0.77)와 토양pH(-0.68)에서 높은 상관을 보였다. 고도에 따른 무생물적 환경인자 (토양습도, 토양pH)와 HHT 의 함량 관계에 관해 다중회귀 분석을 실시한 결과, 토양 습도의 회귀계수($26.48^{***}$) 만 유의하여 토양 습도가 상대적으로 HHT 함량에 높은 영향을 미치는 것으로 나타났다. 생물적 환경인자(damage index)에 따른 HHT 함량에 미치는 영향을 살펴 본 결과, HHT는 2차곡선회귀적으로 증가하다 감소하는($H=278.23+1242D-398.87D^2$) 경향을 보였고 damage index는 HHT 함량에 높은 영향을 미치는 것으로 분석되었다. 마지막으로 HHT 의 함량에 영향을 미치는 최적환경인자를 분석한 결과, damage index와 토양 습도 모두가 2차다항회귀식으로 가장 적합하였고 결정계수는 각각 0.73와 0.67로 damage index가 상대적으로 HHT 함량에 높은 영향을 미치는 것으로 나타났다. 이는 섭식자 또는 균류와 같은 스트레스로 인한 방어기작이 HHT 의 생성에 높은 영향을 미치는 것으로 판단된다.

Composition and Abundance of Wood-Boring Beetles Inhabited by Pine Trees

  • Park, Yonghwan;Jang, Taewoong;Won, Daesung;Kim, Jongkuk
    • Journal of Forest and Environmental Science
    • /
    • 제35권3호
    • /
    • pp.189-196
    • /
    • 2019
  • Plants are consumed by a myriad of organisms that compete for resources. Direct interactions among multiple plant-feeding organisms in a single host can range for each species from positive to negative. Wood-boring beetle faces a number of biotic and abiotic constraints that interfere with the good prospects from the tree. Biotic factors, including arthropod pests and diseases, and abiotic factors, such as drought and water-logging, are the major constraints affecting the species. The present study aimed to provide basic data for analyzing forest health, identify the kinds of wood-boring beetles in the central part of Korea. Our second goal was to analyze the species composition and diversity of regional communities and to examine. A total of 10,461 individual wood-boring beetles belonging to 8 families and 50 species attracted to trap trees in the pine forests were recorded during the study period on study sites. The results of the analysis of collected species showed that the community structure on all study sites was similar. Seasonal occurrences of dominant wood-boring beetles (5 species) from each study site showed the highest number of all species, except for Siphalinus gigas in May, followed by a gradual decline, and the largest number of Siphalinus gigas appeared in June. The similarity index of species composition was relatively high, ranging from 0.75 to 0.90 for each study site.

The Rapid Apple Decline Phenomenon: Current Status and Expected Associated Factors in Korea

  • Seung-Yeol Lee;Kari A. Peter;Kallol Das;Avalos-Ruiz Diane;Hee-Young Jung
    • The Plant Pathology Journal
    • /
    • 제39권6호
    • /
    • pp.538-547
    • /
    • 2023
  • Rapid apple decline (RAD) is a complex phenomenon affecting cultivated apple trees and particularly dwarf rootstocks on grafted young apple trees. Since its first appearance in the United States, RAD has been reported worldwide, for example in Canada, South America, Africa, and Asia. The phenomenon has also been observed in apple orchards in Korea, and it presented similar symptoms regardless of apple cultivar and cultivation period. Most previous reports have suggested that RAD may be associated with multiple factors, including plant pathogenic infections, abiotic stresses, environmental conditions, and the susceptibility of trees to cold injury during winter. However, RAD was observed to be more severe and affect more frequently apple trees on the Malling series dwarf rootstock. In this study, we reviewed the current status of RAD worldwide and surveyed biotic and abiotic factors that are potentially closely related to it in Korea.

Capsicum annuum NAC4 (CaNAC4) Is a Transcription Factor with Roles in Biotic and Abiotic Stresses

  • Guogeng Jia;Khaing Shwe Zin Thinn;Sun Ha Kim;Jiyoung Min;Sang-Keun Oh
    • The Plant Pathology Journal
    • /
    • 제40권5호
    • /
    • pp.512-524
    • /
    • 2024
  • Transcription factors (TFs) regulate gene expression by binding to DNA. The NAC gene family in plants consists of crucial TFs that influence plant development and stress responses. The whole genome of Capsicum annuum shows over 100 NAC genes (CaNAC). Functional characteristics of the most CaNAC TFs are unknown. In this study, we identified CaNAC4, a novel NAC TF in C. annuum. CaNAC4 expression increased after inoculation with the pathogens, Xanthomonas axonopodis pv. vesicatoria race 3 and X. axonopodis pv. glycines 8ra, and following treatment with the plant hormones, salicylic acid and abscisic acid. We investigated the functional characteristics of the CaNAC4 gene and its roles in salt tolerance and anti-pathogen defense in transgenic Nicotiana benthamiana. For salt stress analysis, the leaf discs of wild-type and CaNAC4-transgenic N. benthamiana plants were exposed to different concentrations of sodium chloride. Chlorophyll loss was more severe in salt stress-treated wild-type plants than in CaNAC4-transgenic plants. To analyze the role of CaNAC4 in anti-pathogen defense, a spore suspension of Botrytis cinerea was used to infect the leaves. The disease caused by B. cinerea gradually increased in severity, and the symptoms were clearer in the CaNAC4-transgenic lines. We also investigated hypersensitive response (HR) in CaNAC4-transgenic plants. The results showed a stronger HR in wild-type plants after infiltration with the apoptosis regulator, BAX. In conclusion, our results suggest that CaNAC4 may enhance salt tolerance and act as a negative regulator of biotic stress in plants.

Life history and reproduction of the amphipod Synchelidium trioostegitum (Crustacea, Oedicerotidae) in a temperate sandy shore, southern Korea

  • Hwan, Yu-Ok;Rip, Seo-Hae
    • 한국어업기술학회:학술대회논문집
    • /
    • 한국어업기술학회 2001년도 춘계 수산관련학회 공동학술대회발표요지집
    • /
    • pp.457-458
    • /
    • 2001
  • Reproductive and life history patterns of marine amphipods are influenced by a variety of biotic and abiotic factors. Those factors may vary on local scales or along geographic patterns and result local or geographic variations in reproduction and life history. Although many studies in life history of amphipods were carried out at various habitats, limited information on the life history and reproduction at a shallow sandy shore 〈 1 m depth is available (Bear and Moore, 1996). (omitted)

  • PDF

The WRKY Superfamily of Rice Transcription Factors

  • Jang, Ji-Young;Choi, Chang-Hyun;Hwang, Duk-Ju
    • The Plant Pathology Journal
    • /
    • 제26권2호
    • /
    • pp.110-114
    • /
    • 2010
  • WRKY transcription factors are known to be involved in many different biological processes including plant response to biotic stress, abiotic stress, and plant development. WRKY proteins are extensively studied in Arabidopsis. Recently, reports on WRKY proteins are rapidly increasing in the other plant species, especially in rice. Therefore, this review will discuss the function of rice WRKY proteins reported so far.

Identification of functional SNPs in genes and their effects on plant phenotypes

  • Huq, Md. Amdadul;Akter, Shahina;Nou, Ill Sup;Kim, Hoy Taek;Jung, Yu Jin;Kang, Kwon Kyoo
    • Journal of Plant Biotechnology
    • /
    • 제43권1호
    • /
    • pp.1-11
    • /
    • 2016
  • Single nucleotide polymorphism (SNP) is an abundant form of genetic variation within individuals of species. DNA polymorphism can arise throughout the whole genome at different frequencies in different species. SNP may cause phenotypic diversity among individuals, such as individuals with different color of plants or fruits, fruit size, ripening, flowering time adaptation, quality of crops, grain yields, or tolerance to various abiotic and biotic factors. SNP may result in changes in amino acids in the exon of a gene (asynonymous). SNP can also be silent (present in coding region but synonymous). It may simply occur in the noncoding regions without having any effect. SNP may influence the promoter activity for gene expression and finally produce functional protein through transcription. Therefore, the identification of functional SNP in genes and analysis of their effects on phenotype may lead to better understanding of their impact on gene function for varietal improvement. In this mini-review, we focused on evidences revealing the role of functional SNPs in genes and their phenotypic effects for the purpose of crop improvements.