DOI QR코드

DOI QR Code

Identification of functional SNPs in genes and their effects on plant phenotypes

  • Huq, Md. Amdadul (Department of Horticulture, Hankyong National University) ;
  • Akter, Shahina (Department of Horticulture, Hankyong National University) ;
  • Nou, Ill Sup (Department of Horticulture, Sunchon National University) ;
  • Kim, Hoy Taek (Department of Horticulture, Sunchon National University) ;
  • Jung, Yu Jin (Department of Horticulture, Hankyong National University) ;
  • Kang, Kwon Kyoo (Department of Horticulture, Hankyong National University)
  • Received : 2016.03.18
  • Accepted : 2016.03.25
  • Published : 2016.03.31

Abstract

Single nucleotide polymorphism (SNP) is an abundant form of genetic variation within individuals of species. DNA polymorphism can arise throughout the whole genome at different frequencies in different species. SNP may cause phenotypic diversity among individuals, such as individuals with different color of plants or fruits, fruit size, ripening, flowering time adaptation, quality of crops, grain yields, or tolerance to various abiotic and biotic factors. SNP may result in changes in amino acids in the exon of a gene (asynonymous). SNP can also be silent (present in coding region but synonymous). It may simply occur in the noncoding regions without having any effect. SNP may influence the promoter activity for gene expression and finally produce functional protein through transcription. Therefore, the identification of functional SNP in genes and analysis of their effects on phenotype may lead to better understanding of their impact on gene function for varietal improvement. In this mini-review, we focused on evidences revealing the role of functional SNPs in genes and their phenotypic effects for the purpose of crop improvements.

Keywords

References

  1. Akond M, Liu S, Schoener L, Anderson JA, Kantartzi SK, Meksem K, Song Q, Wang D, Wen Z, Lightfoot DA, Kassem MA (2013) A SNP-based genetic linkage map of soybean using the SoySNP6K illumina infinium beadchip genotyping array. Journal of Plant Genome Sciences 1:80-89
  2. Alexandra M, Allen AM, Barker GLA, Berry ST, Coghill JA, Gwilliam R, Kirby S, Robinson P, Brenchley RC, D'Amore R, McKenzie N, Waite D, Hall A, Bevan M, Hall N, Edwards KJ (2011) Transcript-specific, single-nucleotide polymorphism discovery and linkage analysis in hexaploid bread wheat (Triticum aestivum L.). Plant Biotechnol J 9:1086-1099 https://doi.org/10.1111/j.1467-7652.2011.00628.x
  3. Alkan C, Coe BP, Eichler EE (2011) Genome structural variation discovery and genotyping. Nat Rev Genet 12:363-376 https://doi.org/10.1038/nrg2958
  4. Allen AM, Barker GL, Berry ST, Coghill JA, Gwilliam R, Kirby S, Robinson P, Brenchley RC, D'Amore R, McKenzie N, Waite D, Hall A, Bevan M, Hall N, Edwards KJ (2011) Transcriptspecific, single-nucleotide polymorphism discovery and linkage analysis in hexaploid bread wheat (Triticum aestivum L.). Plant Biotechnol J 9:1086-1099 https://doi.org/10.1111/j.1467-7652.2011.00628.x
  5. Aranzana MJ, Kim S, Zhao K, Bakker E, Horton M, Jakob K, Lister C, Molitor J, Shindo C, Tang C, Toomajian C, Traw B, Zheng H, Bergelson J, Dean C, Marjoram P, Nordborg M (2005) Genome-wide association mapping in Arabidopsis identifies previously known flowering time and pathogen resistance genes. PLoS Genet 1:e60 https://doi.org/10.1371/journal.pgen.0010060
  6. Barchi L, Lanteri S, Portis E, Acquadro A, Vale G, Toppino L, Rotino GL (2011) Identification of SNP and SSR markers in eggplant using RAD tag sequencing. BMC Genomics 12:304 https://doi.org/10.1186/1471-2164-12-304
  7. Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ, Browne C, Ersoz E, Flint-Garcia S, Garcia A, Glaubitz JC (2009) The genetic architecture of maize flowering time. Science 325:714-718 https://doi.org/10.1126/science.1174276
  8. Byers RL, Harker DB, Yourstone SM, Maughan PJ, Udall JA (2012) Development and mapping of SNP assays in allotetraploid cotton. Theor Appl Genet 124:1201-1214 https://doi.org/10.1007/s00122-011-1780-8
  9. Causse M, Desplat N, Pascual L, Paslier MCL, Sauvage C, Bauchet G, Berard A, Bounon R, Tchoumakov M, Brunel D, Bouchet JP (2013) Whole genome resequencing in tomato reveals variation associated with introgression and breeding events. BMC Genomics 14:791 https://doi.org/10.1186/1471-2164-14-791
  10. Chen H, Xie W, He H, Yu H, Chen W, Li J, Yu R, Yao Y, Zhang W, He Y, Tang X, Zhou F, Deng XW, Zhang Q (2014) A high-density SNP genotyping array for rice biology and molecular breeding. Mol Plant 7:541-553 https://doi.org/10.1093/mp/sst135
  11. Ching A, Caldwell KS, Jung M, Dolan M, Smith OS, Tingey S, Morgante M, Rafalski AJ (2002) SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines. BMC Genet 3:19
  12. Chung WH, Jeong N, Kim J, Lee WK, Lee YG, Lee SH, Yoon WC, Kim JH, Choi IY, Choi HK, Moon JK, Kim N, Jeong SC (2014) Population structure and domestication revealed by high-depth resequencing of Korean cultivated and wild soybean genomes. DNA Research 21:153-167 https://doi.org/10.1093/dnares/dst047
  13. Clark SE, Hayes PM, Henson CA (2003) Effects of single nucleotide polymorphisms in ${\beta}$-amylase1 alleles from barley on functional properties of the enzymes. Plant Physiol Bioch 41:798-804 https://doi.org/10.1016/S0981-9428(03)00118-9
  14. Cortes AJ, Chavarro MC, Blair MW (2011) SNP marker diversity in common bean (Phaseolus vulgaris L.). Theor Appl Genet 123:827-845 https://doi.org/10.1007/s00122-011-1630-8
  15. Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12:499-510 https://doi.org/10.1038/nrg3012
  16. Dubcovsky, J. and Dvorak, J. (2007) Genome plasticity: a key factor in the success of polyploid wheat under domestication. Science, 316, 1862-1866. https://doi.org/10.1126/science.1143986
  17. Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-bysequencing (GBS) approach for high diversity species. PLoS ONE 6:e19379 https://doi.org/10.1371/journal.pone.0019379
  18. Fridman E, Carrari F, Liu YS, Fernie AR, Zamir D (2004) Zooming in on a quantitative trait for tomato yield using interspecific introgressions. Science 305:1786-9 https://doi.org/10.1126/science.1101666
  19. Fu YB, Cheng B, Peterson GW (2014) Genetic diversity analysis of yellow mustard (Sinapis alba L.) germplasm based on genotyping by sequencing. Genet Resour Crop Evol 61:579-594 https://doi.org/10.1007/s10722-013-0058-1
  20. Fu YB, Peterson GW (2011) Genetic diversity analysis with 454 pyrosequencing and genomic reduction confirmed the eastern and western division in the cultivated barley gene pool. Plant Genome 4:226-237 https://doi.org/10.3835/plantgenome2011.08.0022
  21. Ganal MW, Altmann T, Roder MS (2009) SNP identification in crop plants. Curr Opin Plant Biol 12:211-217 https://doi.org/10.1016/j.pbi.2008.12.009
  22. Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92-100 https://doi.org/10.1126/science.1068275
  23. Gut IG (2001) Automation in genotyping of single nucleotide polymorphisms. Hum Mutat 17:475-92 https://doi.org/10.1002/humu.1131
  24. Hamilton JP, Hansey CN, Whitty BR, Stoffel K, Massa AN, Deynze AV, Jong WSD, Douches DS, Buell CR (2011) Single nucleotide polymorphism discovery in elite north american potato germplasm. BMC Genomics 12:302 https://doi.org/10.1186/1471-2164-12-302
  25. Hamilton JP, Sim SC, Stoffel K, Deynze AV, Buell CR, Francis DM (2012) Single nucleotide polymorphism discovery in cultivated tomato via sequencing by synthesis. Plant Genome 5:17-29 https://doi.org/10.3835/plantgenome2011.12.0033
  26. Hirakawa H, Shirasawa K , Miyatake K, Nunome T, Negoro S, Ohyama A, Yamaguchi H, Sato S, Isobe S, Tabata S, Fukuoka H (2014) Draft genome sequence of eggplant (Solanum melongena L.): the representative Solanum species indigenous to the old world. DNA Res 2:649-660
  27. Hirakawa H, Shirasawa K, Ohyama A, Fukuoka H, Aoki K, Rothan C, Sato S, Isobe S, Tabata S (2013) Genome-wide SNP genotyping to infer the effects on gene functions in tomato. DNA Res 20:221-233 https://doi.org/10.1093/dnares/dst005
  28. Hont AD, Denoeud F, Aury JM, Baurens FC, Carreel F, Garsmeur O, Noel B, Bocs S, Droc G, Rouard M (2012) The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature 488:213-217 https://doi.org/10.1038/nature11241
  29. Huang S, Li R, Zhang Z, Li L, Gu X, Fan W, Lucas WJ, Wang X, Xie B, Ni P (2009) The genome of the cucumber, Cucumis sativus L. Nat Genet 41:1275-1281 https://doi.org/10.1038/ng.475
  30. Huang X, Feng Q, Qian Q, Zhao Q, Wang L, Wang A, Guan J, Fan D, Weng Q, Huang T, Dong G, Sang T, Han B (2009) High-throughput genotyping by whole-genome resequencing. Genome Res 19:1068-1076 https://doi.org/10.1101/gr.089516.108
  31. Huang X, Wei X, Sang T, Zhao Q, Feng Q, Zhao Y, Li C, Zhu C, Lu T, Zhang Z (2010) Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet 42:961-967 https://doi.org/10.1038/ng.695
  32. Huq MA, Akter S, Jung YJ, Nou IS, Cho YG, Kang KK (2016) Genome sequencing, a milestone for genomic research and plant breeding. Plant Breeding and Biotechnology 4:29-39 https://doi.org/10.9787/PBB.2016.4.1.029
  33. Hyten DL, Cannon SB, Song Q, Weeks N, Fickus EW, Shoemaker RC, Specht JE, Farmer AD, May GD, Cregan PB (2010). High-throughput SNP discovery through deep resequencing of a reduced representation library to anchor and orient scaffolds in the soybean whole genome sequence. BMC Genomics 11:38 https://doi.org/10.1186/1471-2164-11-38
  34. International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793-800 https://doi.org/10.1038/nature03895
  35. Jang SJ, Sato M1, Sato K, Jitsuyama Y, Fujino K, Mori H, Takahashi R, Benitez ER, Liu B, Yamada T, Abe J (2015) A single-nucleotide polymorphism in an endo-1,4-${\beta}$-glucanase gene controls seed coat permeability in soybean. Plos One 10:e0128527 https://doi.org/10.1371/journal.pone.0128527
  36. Jeong IS, Yoon UH, Lee GS, Ji HS, Lee HJ, Han CD, Hahn JH, An G, Kim TH (2013) SNP-based analysis of genetic diversity in anther derived rice by whole genome sequencing. Rice 6:6 doi: 10.1186/1939-8433-6-6
  37. Jones E, Chu WC, Ayele M, Ho J, Bruggeman E, Yourstone K, Rafalski A, Smith OS, McMullen MD, Bezawada C, Warren J, Babayev J, Basu S, Smith S (2009) Development of single nucleotide polymorphism (SNP) markers for use in commercial maize (Zea mays L.) germplasm. Mol Breeding 24:165-176 https://doi.org/10.1007/s11032-009-9281-z
  38. Kharabian-Masouleh A, Waters DLE, Reinke RF, Ward R, Henry RJ (2012) SNP in starch biosynthesis genes associated with nutritional and functional properties of rice. Sci Rep 2:557 https://doi.org/10.1038/srep00557
  39. Kim JE, Oh SK, Lee JH, Lee BM, Jo SH (2014) Genome-wide SNP calling using next generation sequencing data in tomato. Mol Cells 37:36-42 https://doi.org/10.14348/molcells.2014.2241
  40. Kircher M, Kelso J (2010) High-throughput DNA sequencing-concepts and limitations. BioEssays 32:524-536 https://doi.org/10.1002/bies.200900181
  41. Kruglyak L (1997) The use of a genetic map of biallelic markers in linkage studies. Nat Genet 17:21-24 https://doi.org/10.1038/ng0997-21
  42. Kumar B, Abdel-Ghani AH, Pace J, Reyes-Matamoros J, Hochholdinger F, Lubberstedt T (2014) Association analysis of single nucleotide polymorphisms in candidate genes with root traits in maize (Zea mays L.) seedlings. Plant Science 224:9-19 https://doi.org/10.1016/j.plantsci.2014.03.019
  43. Kumar S, Banks TW, Cloutier S (2012) SNP discovery through next-generation sequencing and its applications. Int J Plant Genomics 2012:831460 doi:10.1155/2012/831460
  44. Lam HM, Xu X, Liu X, Chen W, Yang G, Wong FL, Li MW, He W, Qin N, Wang B, Li J, Jian M, Wang J, Shao G, Wang J, Sun SS, Zhang G (2010) Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat Genet 42:1053-1059 https://doi.org/10.1038/ng.715
  45. Lee YG, Jeong N, Kim JH, Lee K, Kim KH, Pirani A, Ha BK, Kang ST, Park BS, Moon JK, Kim N, Jeong SC (2015) Development, validation and genetic analysis of a large soybean SNP genotyping array. Plant J 81:625-636 https://doi.org/10.1111/tpj.12755
  46. LeVan TD, Bloom JW, Bailey TJ, Karp CL, Halonen M, Martinez FD, Vercelli D (2001) A common single nucleotide polymorphism in the CD 14 promoter decreases the affinity of Sp protein binding and enhances transcriptional activity. J Immunol 167:5838-5844 https://doi.org/10.4049/jimmunol.167.10.5838
  47. Li F, Kitashiba H, Inaba K, Nishio T (2009) A Brassica rapa linkage map of EST-based SNP markers for identification of candidate genes controlling flowering time and leaf morphological traits. DNA Res 16:311-323 https://doi.org/10.1093/dnares/dsp020
  48. Lu F, Lipka AE, Glaubitz J, Elshire R, Cherney JH, Casler MD, Buckler ES, Costich DE (2013) Switchgrass genomic diversity, ploidy, and evolution: novel insights from a network-based SNP discovery protocol. PLoS Genet 9:e1003215 https://doi.org/10.1371/journal.pgen.1003215
  49. Mardis ER (2007) The impact of next-generation sequencing technology on genetics. Trends Genet 24:133-141
  50. Mayer KF, Waugh R, Brown JW, Schulman A, Langridge P, Platzer M, Fincher GB, Muehlbauer GJ, Sato K, Close TJ, Wise RP, Stein N (2012). A physical, genetic and functional sequence assembly of the barley genome. Nature 491:711-716
  51. McCouch SR, Zhao K, Wright M, Tung CW, Ebana K, Thomson M, Reynolds A, Wang D, DeClerck G, Ali ML (2010) Development of genome-wide SNP assays for rice. Breed Sci 60:524-535 https://doi.org/10.1270/jsbbs.60.524
  52. McNally KL, Childs KL, Bohnert R, Davidson RM, Zhao K, Ulat VJ, Zeller G, Clark RM, Hoen DR, Bureau TE (2009) Genomewide SNP variation reveals relationships among landraces and modern varieties of rice. Proc Natl Acad Sci USA 106:12273-12278 https://doi.org/10.1073/pnas.0900992106
  53. Morin PA, Luikart G, Wayne RK (2004) SNPs in ecology, evolution and conservation. Trends in Ecology and Evolution 19: 208-216 https://doi.org/10.1016/j.tree.2004.01.009
  54. Muraya MM, Schmutzer T, Ulpinnis C, Scholz U, Altmann T (2015) Targeted sequencing reveals large-scale sequence polymorphism in maize candidate genes for biomass production and composition. PLoS One 10:e0132120 https://doi.org/10.1371/journal.pone.0132120
  55. Oliver RE, Lazo GR, Lutz JD, Rubenfield MJ, Tinker NA, Anderson JM, Wisniewski Morehead NH, Adhikary D, Jellen EN (2011) Model SNP development for complex genomes based on hexaploid oat using high-throughput 454 sequencing technology. BMC Genomics 12:77 https://doi.org/10.1186/1471-2164-12-77
  56. Pajerowska-Mukhtar K, Stich B, Achenbach U, Ballvora A, Lubeck J, Strahwald J, Tacke E, Hofferbert HR, Ilarionova E, Bellin D, Walkemeier B, Basekow R, Kersten B, Gebhardt C (2009) Single nucleotide polymorphisms in the allene oxide synthase 2 gene are associated with field resistance to late blight in populations of tetraploid potato cultivars. Genetics 181:1115-1127 https://doi.org/10.1534/genetics.108.094268
  57. Parida SK, Mukerji M, Singh AK, Singh NK, Mohapatra T (2012) SNPs in stress-responsive rice genes: validation, genotyping, functional relevance and population structure. BMC Genomics 13:426 https://doi.org/10.1186/1471-2164-13-426
  58. Pasam RK, Sharma R, Malosetti M, Eeuwijk FAV, Haseneyer G, Kilian B, Graner A (2012) Genome-wide association studies for agronomical traits in a world-wide spring barley collection. BMC Plant Biology 12:16 https://doi.org/10.1186/1471-2229-12-16
  59. Poland J, Endelman J, Dawson J, Rutkoski J, Wu S, Manes Y, Dreisigacker S, Crossa J, Sanchez-Villeda H, Sorrells M, Jannink JL (2012) Genomic selection in wheat breeding using genotyping-by-sequencing. Plant Genome 5:103-113 https://doi.org/10.3835/plantgenome2012.06.0006
  60. Poland JA, Bradbury PJ, Buckler ES, Nelson RJ (2011) Genome-wide nested association mapping of quantitative resistance to northern leaf blight in maize. Proc Natl Acad Sci USA 108:6893-6898
  61. Poland JA, Rife TW (2012) Genotyping-by-sequencing for plant breeding and genetics. Plant Genome 5:92-102 https://doi.org/10.3835/plantgenome2012.05.0005
  62. Potato Genome Sequencing Consortium (2011) Genome sequence and analysis of the tuber crop potato. Nature 475:189-195 https://doi.org/10.1038/nature10158
  63. Rafalski A (2002) Applications of single nucleotide polymorphisms in crop genetics. Curr Opin Plant Biol 5:94-100 https://doi.org/10.1016/S1369-5266(02)00240-6
  64. Rostoks N, Mudie S, Cardle L, Russell J, Ramsay L, Booth A, Svensson JT, Wanamaker SI, Walia H, Rodriguez EM, Hedley PE, Liu H, Morris J, Close TJ, Marshall DF, Waugh R (2005) Genome-wide SNP discovery and linkage analysis in barley based on genes responsive to abiotic stress. Mol Genet Genomics 274:515-27 https://doi.org/10.1007/s00438-005-0046-z
  65. Sachidanandam R, Weissman D, Schmidt SC, Kakol JM, Stein LD, Marth G, Sherry S, Mullikin JC, Mortimore BJ, Willey DL (2001) A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 409:928-933 https://doi.org/10.1038/35057149
  66. Sanger F, Nicklen S, Coulson AR (1977a) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463-5467 https://doi.org/10.1073/pnas.74.12.5463
  67. Sanger F, Air GM, Barrell BG, Brown NL, Coulson AR, Fiddes CA, Hutchison CA, Slocombe PM, Smith M (1977b) Nucleotide sequence of bacteriophage phiX174 DNA. Nature 265:687-695 https://doi.org/10.1038/265687a0
  68. Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178-183 https://doi.org/10.1038/nature08670
  69. Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112-1115 https://doi.org/10.1126/science.1178534
  70. Schreiber L, Nader-Nieto AC, Schonhals EM, Walkemeier B, Gebhardt C (2014) SNPs in genes functional in starch-sugar interconversion associate with natural variation of tuber starch and sugar content of potato (Solanum tuberosum L.). G3 (Bethesda) 4:1797-1811
  71. Shi Z, Liu S, Noe J, Arelli P, Meksem K, Li Z (2015) SNP identification and marker assay development for high-throughput selection of soybean cyst nematode resistance. BMC Genomics 16:314 https://doi.org/10.1186/s12864-015-1531-3
  72. Shirasawa K, Fukuoka H, Matsunaga H, Kobayashi Y, Kobayashi I, Hirakawa H, Isobe S, Tabata S (2013) Genome-wide association studies using single nucleotide polymorphism markers developed by re-sequencing of the genomes of cultivated tomato. DNA Res 20:593-603 https://doi.org/10.1093/dnares/dst033
  73. Shirasawa K, Hirakawa H, Nunome T, Tabata S, Isobe S (2016) Genome-wide survey of artificial mutations induced by ethyl methanesulfonate and gamma rays in tomato. Plant Biotechnol J 14:51-60 https://doi.org/10.1111/pbi.12348
  74. Singh R, Ong-Abdullah M, Low ETL, Manaf MAA, Rosli R, Nookiah R (2013) Oil palm genome sequence reveals divergence of interfertile species in old and new worlds. Nature 500:335-339 https://doi.org/10.1038/nature12309
  75. Sonah H, Bastien M, Iquira E, Tardivel A, Legare G, Boyle B, Normandeau e, Laroche J, Larose S, Jean M, Belzile F (2013) An improved genotyping by sequencing (GBS) approach offering increased ver-satility and efficiency of SNP discovery and genotyping. PLoS One 8:e54603 https://doi.org/10.1371/journal.pone.0054603
  76. Song Q, Hyten DL, Jia G, Quigley CV, Fickus EW, Nelson RL, Cregan PB (2013) Development and evaluation of SoySNP50K, a high-density genotyping array for soybean. PLoS One 8:e54985 https://doi.org/10.1371/journal.pone.0054985
  77. Spindel J, Wright M, Chen C, Cobb J, Gage J, Harrington S, Lorieux M, Ahmadi N, McCouch S (2013) Bridging the genotyping gap: using genotyping by sequencing (GBS) to add high-density SNP markers and new value to traditional bi-parental mapping and breeding populations. Theor Appl Genet 126:2699-2716 https://doi.org/10.1007/s00122-013-2166-x
  78. Steemers FJ, Gunderson KL (2007) Whole genome genotyping technologies on the bead array platform. Biotechnol J 2:41-49 https://doi.org/10.1002/biot.200600213
  79. Sun R, Chang Y, Yang F, Wang Y, Li H, Zhao Y, Chen D, Wu T, Zhang X, Han Z (2015) A dense SNP genetic map constructed using restriction site-associated DNA sequencing enables detection of QTLs controlling apple fruit quality. BMC Genomics 16:747 https://doi.org/10.1186/s12864-015-1946-x
  80. Tenaillon MI, Sawkins MC, Long AD, Gaut RL, Doebley JF, Gaut BS (2001) Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays ssp. mays L.). Proc Natl Acad Sci USA 98:9161-9166 https://doi.org/10.1073/pnas.151244298
  81. The 100 Tomato Genome Sequencing Consortium (2014) Exploring genetic variation in the tomato (Solanum section Lycopersicon) clade by whole-genome sequencing. Plant J 80:136-148 https://doi.org/10.1111/tpj.12616
  82. Tomato Genome Consortium (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635-641 https://doi.org/10.1038/nature11119
  83. Truong HT, Ramos AM, Yalcin F, de Ruiter M, van der Poel HJ, Huvenaars KH, Hogers RC, van Enckevort LJ, Janssen A, van Orsouw NJ, van Eijk MJ (2012) Sequence-based genotyping for marker discovery and co-dominant scoring in germplasm and populations. PLoS One 7:e37565 https://doi.org/10.1371/journal.pone.0037565
  84. Tung CW, Zhao K, Wright MK, Ali ML, Jung J, Kimball J, Tyagi W, Thomson MJ, McNally K, Leung H (2010) Development of a research platform for dissecting phenotype-genotype associations in rice (Oryza spp.). Rice 3:205-217 https://doi.org/10.1007/s12284-010-9056-5
  85. Uitdewilligen JG, Wolters AM, D'hoop BB, Borm TJ, Visser RG, van Eck HJ (2013) A next-generation sequencing method for genotyping by-sequencing of highly heterozygous autotetraploid potato. PLoS ONE 8:e62355 https://doi.org/10.1371/journal.pone.0062355
  86. Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar SK, Troggio M, Pruss D (2010) The genome of the domesticated apple (Malus x domestica Borkh.). Nat Genet 42:833-839 https://doi.org/10.1038/ng.654
  87. Velasco R, Zharkikh A, Troggio M, Cartwright DA, Cestaro A, Pruss D, Pindo M, FitzGerald LM, Vezzulli S, Reid J (2007) A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS One 2:e1326 https://doi.org/10.1371/journal.pone.0001326
  88. Vidal RO, Nascimento LC, Mondego JMC, Pereira GAG, Carazzolle MF (2012) Identification of SNPs in RNA-seq data of two cultivars of Glycine max (soybean) differing in drought resistance. Genet Mol Biol 35:331-334 https://doi.org/10.1590/S1415-47572012000200014
  89. Vignal A, Milan D, SanCristobal M, Eggen A (2002) A review on SNP and other types of molecular markers and their use in animal genetics. Genet Sel Evol 34:275-305 https://doi.org/10.1186/1297-9686-34-3-275
  90. Wang S, Wong D, Forrest K, Allen A, Chao S, Huang BE, Maccaferri M, Salvi S, Milner SG, Cattivelli L (2014) Characterization of polyploid wheat genomic diversity using a high-density 90000 single nucleotide polymorphism array. Plant Biotechnol J 12:787-796 https://doi.org/10.1111/pbi.12183
  91. Waugh R, Jannink JL, Muehlbauer GJ, Ramsay L (2009) The emergence of whole genome association scans in barley. Curr Opin Plant Biol 12:218-222 https://doi.org/10.1016/j.pbi.2008.12.007
  92. Wei O, Peng Z, Zhou Y, Yang Z, Wu K, Ouyang Z (2011) Nucleotide diversity and molecular evolution of the WAG-2 gene in common wheat (Triticum aestivum L.) and its relatives. Genet Mol Biol 34:606-615 https://doi.org/10.1590/S1415-47572011000400013
  93. Wei Q, Wang Y, Qin X, Zhang Y, Zhang Z, Wang J, Li J, Lou Q, Chen J (2014) An SNP-based saturated genetic map and QTL analysis of fruit-related traits in cucumber using specific-length amplified fragment (SLAF) sequencing. BMC Genomics 15:1158 https://doi.org/10.1186/1471-2164-15-1158
  94. Xia Y, Li R, Ning Z, Bai G, Siddique KH, Yan G, Baum M, Varshney RK, Guo P (2013) Single nucleotide polymorphisms in HSP17.8 and their association with agronomic traits in barley. PLoS One 8:e56816 https://doi.org/10.1371/journal.pone.0056816
  95. Xie W, Feng Q, Yu H, Huang X, Zhao Q, Xing Y, Yu S, Han B, Zhang Q (2010) Parent-independent genotyping for constructing an ultrahigh-density linkage map based on population sequencing. Proc Natl Acad Sci USA 107:10578-10583 https://doi.org/10.1073/pnas.1005931107
  96. Xu J, Yuan Y, Xu Y, Zhang G, Guo X, Wu F, Wang Q, Rong T, Pan G, Cao M, Tang Q, Gao S, Liu Y, Wang J, Lan H, Lu Y (2014) Identification of candidate genes for drought tolerance by whole-genome resequencing in maize. BMC Plant Biology 14:83 https://doi.org/10.1186/1471-2229-14-83
  97. Yu H, Xie W, Li J, Zhou F, Zhang Q (2014) A whole-genome SNP array (RICE6K) for genomic breeding in rice. Plant Biotechnol J 12:28-37 https://doi.org/10.1111/pbi.12113
  98. Yu J, Hu S, Wang J, Wong GKS, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79-92 https://doi.org/10.1126/science.1068037
  99. Zhang X, Borevitz JO (2009) Global analysis of allele-specific expression in Arabidopsis thaliana. Genetics 182:943-954 https://doi.org/10.1534/genetics.109.103499
  100. Zhao K, Tung CW, Eizenga GC, Wright MH, Ali ML, Price AH, Norton GJ, Islam MR, Reynolds A, Mezey J, McClung AM, Bustamante CD, McCouch SR (2011) Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nat Commun 2:467 https://doi.org/10.1038/ncomms1467
  101. Zhou Z, Jiang Y, Wang Z, Gou Z, Lyu J, Li W, Yu Y, Shu L, Zhao Y, Ma Y (2015) Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nature Biotechnology 33:408-414 https://doi.org/10.1038/nbt.3096

Cited by

  1. In-depth genome characterization of a Brazilian common bean core collection using DArTseq high-density SNP genotyping vol.18, pp.1, 2017, https://doi.org/10.1186/s12864-017-3805-4
  2. Marker assisted selection (MAS) towards generating stress tolerant crop plants 2017, https://doi.org/10.1016/j.plgene.2017.05.014
  3. Assessing and Exploiting Functional Diversity in Germplasm Pools to Enhance Abiotic Stress Adaptation and Yield in Cereals and Food Legumes vol.8, 2017, https://doi.org/10.3389/fpls.2017.01461
  4. TILLING, high-resolution melting (HRM), and next-generation sequencing (NGS) techniques in plant mutation breeding vol.37, pp.3, 2017, https://doi.org/10.1007/s11032-017-0643-7