• 제목/요약/키워드: ARMA error

검색결과 49건 처리시간 0.027초

Effects of Temporal Aggregation on Hannan-Rissanen Procedure

  • Shin, Dong-Wan;Lee, Jong-Hyup
    • Journal of the Korean Statistical Society
    • /
    • 제23권2호
    • /
    • pp.325-340
    • /
    • 1994
  • Effects of temporal aggregation on estimation for ARMA models are studied by investigating the Hannan & Rissanen (1982)'s procedure. The temporal aggregation of autoregressive process has a representation of an autoregressive moving average. The characteristic polynomials associated with autoregressive part and moving average part tend to have roots close to zero or almost identical. This caused a numerical problem in the Hannan & Rissanen procedure for identifying and estimating the temporally aggregated autoregressive model. A Monte-Carlo simulation is conducted to show the effects of temporal aggregation in predicting one period ahead realization.

  • PDF

Neural Network and Its Application to Rainfall-Runoff Forecasting

  • Kang, Kwan-Won;Park, Chan-Young;Kim, Ju-Hwan
    • Korean Journal of Hydrosciences
    • /
    • 제4권
    • /
    • pp.1-9
    • /
    • 1993
  • It is a major objective for the management and operation of water resources system to forecast streamflows. The applicability of artificial neural network model to hydrologic system is analyzed and the performance is compared by statistical method with observed. Multi-layered perception was used to model rainfall-runoff process at Pyung Chang River Basin in Korea. The neural network model has the function of learning the process which can be trained with the error backpropagation (EBP) algorithm in two phases; (1) learning phase permits to find the best parameters(weight matrix) between input and output. (2) adaptive phase use the EBP algorithm in order to learn from the provided data. The generalization results have been obtained on forecasting the daily and hourly streamflows by assuming them with the structure of ARMA model. The results show validities in applying to hydrologic forecasting system.

  • PDF

채터로브 계산을 위한 고유모우드 분석법 (Natural Mode Analysis for Chatter Lobe Estimation)

  • 윤문철;조현덕;이응숙
    • 한국기계가공학회지
    • /
    • 제2권2호
    • /
    • pp.60-66
    • /
    • 2003
  • For the estimation of chatter lobe boundary it is very important to calculate the natural mode of cutting process. There are many time series algorithms for getting the natural mode of structural endmilling dynamics considering the cutting process. In this study, we have compared several time series methods such as AR algorithm, ARX, ARMAX, ARMA, Box Jenkins, Output Error, Recursive ARX, Recursive ARMAX considering the sampling frequency. As a results, the ARX, ARMAX and IV 4 are more desirable algorithms for the calculation of modal parameters such as natural frequency and damping ratio In endmilling operation. Also these algorithms may be adopted for the natural mode estimation of endmilling operation for chatter lobe prediction.

  • PDF

선반가공시 채터 모드 및 안정영역 분석 (Chatter Mode and Stability Boundary Analysis in Turning)

  • 오상록;진도훈;윤문철;류인일;하만경
    • 한국공작기계학회논문집
    • /
    • 제14권5호
    • /
    • pp.7-12
    • /
    • 2005
  • This paper presents several time series methods to analyze the chatter mechanics by using the power spectrum of these algorithms considering the cutting dynamics. In this study, several time series models such as AR(burg, forwardbackward, geometric lattice, instrument variable, least square, Yule Walker), ARX(1s, iv4), ARMAX, ARMA, Box Jenkins, Output Error were modeled and compared with one another. Finally, it was proven that time series modelings are also a desirable and reliable algorithm than the other conventional methods(FFT) for the calculation of the chatter mode in turning operation. Also, the spectrum of times series methods is a little bit more powerful than the FFT fer the detection of a high noisy and weak chatter mode. The radial cutting force Fy has been used for spectrum and chatter stability lobe analysis in this study.

지수혼합 시계열 모형의 추정 (Estimation for the Exponential ARMA Model)

  • Won Kyung Kim;In Kyu Kim
    • 응용통계연구
    • /
    • 제7권2호
    • /
    • pp.239-248
    • /
    • 1994
  • 지수혼합 시계열 모형인 EARMA(1,1) 모형이 율-워커 추정법과 조건최소제곱 추정법으로 추정되었다. 율-워커 추정량은 이동평균모수가 포함된 ERAMA(1,1) 모형인 경우 유일하지 못하므로 가역 조건을 만족하는 추정량이 유일한 추정량으로 얻어졌고, 조건최소제곱 추정량은 근사추정량이 얻어졌다. 모의 실험을 통하여 근사조건제곱 추정량은 율-워커 추정량보다 평균제곱오차면에서 훨씬 좋은 추정량으로 나타났다.

  • PDF

Estimation of Smoothing Constant of Minimum Variance and Its Application to Shipping Data with Trend Removal Method

  • Takeyasu, Kazuhiro;Nagata, Keiko;Higuchi, Yuki
    • Industrial Engineering and Management Systems
    • /
    • 제8권4호
    • /
    • pp.257-263
    • /
    • 2009
  • Focusing on the idea that the equation of exponential smoothing method (ESM) is equivalent to (1, 1) order ARMA model equation, new method of estimation of smoothing constant in exponential smoothing method is proposed before by us which satisfies minimum variance of forecasting error. Theoretical solution was derived in a simple way. Mere application of ESM does not make good forecasting accuracy for the time series which has non-linear trend and/or trend by month. A new method to cope with this issue is required. In this paper, combining the trend removal method with this method, we aim to improve forecasting accuracy. An approach to this method is executed in the following method. Trend removal by a linear function is applied to the original shipping data of consumer goods. The combination of linear and non-linear function is also introduced in trend removal. For the comparison, monthly trend is removed after that. Theoretical solution of smoothing constant of ESM is calculated for both of the monthly trend removing data and the non monthly trend removing data. Then forecasting is executed on these data. The new method shows that it is useful especially for the time series that has stable characteristics and has rather strong seasonal trend and also the case that has non-linear trend. The effectiveness of this method should be examined in various cases.

A novel SARMA-ANN hybrid model for global solar radiation forecasting

  • Srivastava, Rachit;Tiwaria, A.N.;Giri, V.K.
    • Advances in Energy Research
    • /
    • 제6권2호
    • /
    • pp.131-143
    • /
    • 2019
  • Global Solar Radiation (GSR) is the key element for performance estimation of any Solar Power Plant (SPP). Its forecasting may help in estimation of power production from a SPP well in advance, and may also render help in optimal use of this power. Seasonal Auto-Regressive Moving Average (SARMA) and Artificial Neural Network (ANN) models are combined in order to develop a hybrid model (SARMA-ANN) conceiving the characteristics of both linear and non-linear prediction models. This developed model has been used for prediction of GSR at Gorakhpur, situated in the northern region of India. The proposed model is beneficial for the univariate forecasting. Along with this model, we have also used Auto-Regressive Moving Average (ARMA), SARMA, ANN based models for 1 - 6 day-ahead forecasting of GSR on hourly basis. It has been found that the proposed model presents least RMSE (Root Mean Square Error) and produces best forecasting results among all the models considered in the present study. As an application, the comparison between the forecasted one and the energy produced by the grid connected PV plant installed on the parking stands of the University shows the superiority of the proposed model.

Improving SARIMA model for reliable meteorological drought forecasting

  • Jehanzaib, Muhammad;Shah, Sabab Ali;Son, Ho Jun;Kim, Tae-Woong
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.141-141
    • /
    • 2022
  • Drought is a global phenomenon that affects almost all landscapes and causes major damages. Due to non-linear nature of contributing factors, drought occurrence and its severity is characterized as stochastic in nature. Early warning of impending drought can aid in the development of drought mitigation strategies and measures. Thus, drought forecasting is crucial in the planning and management of water resource systems. The primary objective of this study is to make improvement is existing drought forecasting techniques. Therefore, we proposed an improved version of Seasonal Autoregressive Integrated Moving Average (SARIMA) model (MD-SARIMA) for reliable drought forecasting with three years lead time. In this study, we selected four watersheds of Han River basin in South Korea to validate the performance of MD-SARIMA model. The meteorological data from 8 rain gauge stations were collected for the period 1973-2016 and converted into watershed scale using Thiessen's polygon method. The Standardized Precipitation Index (SPI) was employed to represent the meteorological drought at seasonal (3-month) time scale. The performance of MD-SARIMA model was compared with existing models such as Seasonal Naive Bayes (SNB) model, Exponential Smoothing (ES) model, Trigonometric seasonality, Box-Cox transformation, ARMA errors, Trend and Seasonal components (TBATS) model, and SARIMA model. The results showed that all the models were able to forecast drought, but the performance of MD-SARIMA was robust then other statistical models with Wilmott Index (WI) = 0.86, Mean Absolute Error (MAE) = 0.66, and Root mean square error (RMSE) = 0.80 for 36 months lead time forecast. The outcomes of this study indicated that the MD-SARIMA model can be utilized for drought forecasting.

  • PDF

A hidden Markov model for long term drought forecasting in South Korea

  • Chen, Si;Shin, Ji-Yae;Kim, Tae-Woong
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.225-225
    • /
    • 2015
  • Drought events usually evolve slowly in time and their impacts generally span a long period of time. This indicates that the sequence of drought is not completely random. The Hidden Markov Model (HMM) is a probabilistic model used to represent dependences between invisible hidden states which finally result in observations. Drought characteristics are dependent on the underlying generating mechanism, which can be well modelled by the HMM. This study employed a HMM with Gaussian emissions to fit the Standardized Precipitation Index (SPI) series and make multi-step prediction to check the drought characteristics in the future. To estimate the parameters of the HMM, we employed a Bayesian model computed via Markov Chain Monte Carlo (MCMC). Since the true number of hidden states is unknown, we fit the model with varying number of hidden states and used reversible jump to allow for transdimensional moves between models with different numbers of states. We applied the HMM to several stations SPI data in South Korea. The monthly SPI data from January 1973 to December 2012 was divided into two parts, the first 30-year SPI data (January 1973 to December 2002) was used for model calibration and the last 10-year SPI data (January 2003 to December 2012) for model validation. All the SPI data was preprocessed through the wavelet denoising and applied as the visible output in the HMM. Different lead time (T= 1, 3, 6, 12 months) forecasting performances were compared with conventional forecasting techniques (e.g., ANN and ARMA). Based on statistical evaluation performance, the HMM exhibited significant preferable results compared to conventional models with much larger forecasting skill score (about 0.3-0.6) and lower Root Mean Square Error (RMSE) values (about 0.5-0.9).

  • PDF