• Title/Summary/Keyword: AR model estimation method

Search Result 51, Processing Time 0.027 seconds

A Study of Estimation Method for Auto-Regressive Model with Non-Normal Error and Its Prediction Accuracy (비정규 오차를 고려한 자기회귀모형의 추정법 및 예측성능에 관한 연구)

  • Lim, Bo Mi;Park, Cheong-Sool;Kim, Jun Seok;Kim, Sung-Shick;Baek, Jun-Geol
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.39 no.2
    • /
    • pp.109-118
    • /
    • 2013
  • We propose a method for estimating coefficients of AR (autoregressive) model which named MLPAR (Maximum Likelihood of Pearson system for Auto-Regressive model). In the present method for estimating coefficients of AR model, there is an assumption that residual or error term of the model follows the normal distribution. In common cases, we can observe that the error of AR model does not follow the normal distribution. So the normal assumption will cause decreasing prediction accuracy of AR model. In the paper, we propose the MLPAR which does not assume the normal distribution of error term. The MLPAR estimates coefficients of auto-regressive model and distribution moments of residual by using pearson distribution system and maximum likelihood estimation. Comparing proposed method to auto-regressive model, results are shown to verify improved performance of the MLPAR in terms of prediction accuracy.

A Study on Analysis of Time Delay Model Using Autoregressive Method for Mobile Communication Channels (AR 모델을 이용한 이동 통신 채널의 시간 지연 해석기법에 관한 연구)

  • 이형권;류은숙;이종길
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.29-32
    • /
    • 1999
  • In this study, the time delay model were simulated using the well-known AR model. Frequency response of the time delay model can be obtained by mapping AR model to JTC model in the time domain. That is, from the few measurement data in JTC model, the channel frequency response can be obtained by the estimation of AR model parameters. From this channel frequency response, the time delay model can be obtained using Fourier transformation. To prove the validity of the suggested method, three models of JTC were shown and analyzed.

  • PDF

A new AR power spectral estimation technique using the Karhunen-Loeve Transform (KLT를 이용한 AR 스펙트럼 추정기법에 관한 연구)

  • 공성곤;양흥석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.134-136
    • /
    • 1986
  • In this paper, a new power spectral estimation technique is presented. At first, by transforming the original data with the Karhunen-Loeve Transform(KLT), we can reduce the amount of the redundant information. Next, by modeling the transformed data by means of the autoregressive(AR) model and then applying the least-squares parameter estimation algorithm to this model, even more accurate spectrum estimates can be obtained. The KLT is the optimum transform for signal representation with respect to the mean-square error criterion. And the least-squares method is used to overcome the inherent shortcomings of popular burg algorithm.

  • PDF

L-Estimation for the Parameter of the AR(l) Model (AR(1) 모형의 모수에 대한 L-추정법)

  • Han Sang Moon;Jung Byoung Cheal
    • The Korean Journal of Applied Statistics
    • /
    • v.18 no.1
    • /
    • pp.43-56
    • /
    • 2005
  • In this study, a robust estimation method for the first-order autocorrelation coefficient in the time series model following AR(l) process with additive outlier(AO) is investigated. We propose the L-type trimmed least squares estimation method using the preliminary estimator (PE) suggested by Rupport and Carroll (1980) in multiple regression model. In addition, using Mallows' weight function in order to down-weight the outlier of X-axis, the bounded-influence PE (BIPE) estimator is obtained and the mean squared error (MSE) performance of various estimators for autocorrelation coefficient are compared using Monte Carlo experiments. From the results of Monte-Carlo study, the efficiency of BIPE(LAD) estimator using the generalized-LAD to preliminary estimator performs well relative to other estimators.

Spectral analysis of random process

  • Akizuki, Kageo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.13-20
    • /
    • 1994
  • The spectrum estimation methods of random processes are expressed in this paper. Beginning with the basic theory, non-parametric and parametric methods are overviewed. As to non-parametric method, numerical calculation method is also discussed. As to parametric method, AR model is a very famous and effective model representing random process. Estimation methods of AR parameters which have been proposed are mentioned here. Wavelet analysis is a recently interested technique in signal processing. An application of wavelet analysis is also shown.

  • PDF

The Characteristics of Muscle Fatigue of EMG Signal Using the AR Model (AR 모델을 이용한 EMG 신호의 근육피로 특성)

  • 김홍래;왕문성
    • Journal of Biomedical Engineering Research
    • /
    • v.10 no.1
    • /
    • pp.11-16
    • /
    • 1989
  • This paper describes the AR model of EMG signal during maximum voluntary contraction. By comparing the AR coefficients and the reflection coefficients of the AR model with the median frequency of power spectrum, it is proved that muscle fatigue can be measured by the AR and the reflection coefficients. In the estimation procedure of AR model parameter, the autocorrelation method is superior to the covariance method, and it is determined that the optimal order is six. As the muscle becomes fatigue, the median frequency of power spectrum is declined, and the AR coefficient [$a_1$] and the reflection coefficient [$k_1$] are also decreased. Therefore the muscle fatigue can be measured by the AR parameter.

  • PDF

Measurement of Muscle Fatigue using AR Parameters (AR 매개 변수를 이용한 근육 피로의 측정)

  • Kim, H.R.;Wang, M.S.;Choi, Y.H.;Park, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.158-161
    • /
    • 1989
  • This paper describes the AR model of EMG signal during maximum voluntary contraction. By comparing the AR coefficients and the reflection coefficients of the AR model with the median frequency of power spectrum, it if proved that muscle fatigue can be measured by the AR and the reflection coefficients. In the estimation procedure of AR model parameter, the auto-correlation method is superior to the covariance method, and it is determined that the optimal order is six. As the muscle becomes fatigue, the median frequency of power spectrum is declined, and the AR coefficient [$a_1$ ] and the reflection coefficient [$k_1$ ] are also decreased. Therefore the muscle fatigue can be measured by the AR parameter.

  • PDF

Speckle Noise Reduction and Flaw Detection of Ultrasonic Non-destructive Testing Based on Wavelet Domain AR Model (웨이브렛 평면 AR 모델을 이용한 초음파 비파괴 검사의 스펙클 잡음 감소 및 결함 검출)

  • 이영석;임래묵;김덕영;신동환;김성환
    • Journal of Welding and Joining
    • /
    • v.17 no.6
    • /
    • pp.100-107
    • /
    • 1999
  • In this paper, we deal with the speckle noise reduction and parameter estimation of ultrasonic NDT(non-destructive test) signals obtained during weld inspection of piping. The overall approach consists of three major steps, namely, speckle noise analysis, proposition of wavelet domain AR(autoregressive) model and flaw detection by proposed model parameter. The data are first processed whereby signals obtained using vertical and angle beam transducer. Correlation properties of speckle noise are then analyzed using multiresolution analysis in wavelet domain. The parameter estimation curve obtained using the proposed model is classified a flaw in weld region where is contaminated by severe speckle noise and also clear flaw signal is obtained through CA-CFAR threshold estimator that is a nonlinear post-processing method for removing the noise from reconstructed ultrasonic signal.

  • PDF

Uncertainty Estimation of AR Model Parameters Using a Bayesian technique (Bayesian 기법을 활용한 AR Model 매개변수의 불확실성 추정)

  • Park, Chan-Young;Park, Jong-Hyeon;Park, Min-Woo;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.280-280
    • /
    • 2016
  • 특정 자료의 시간의 흐름에 따른 예측치를 추정하는 방법으로 AR Model 즉, 자기회귀모형이 많이 사용되고 있다. AR Model은 변수의 현재 값을 과거 값의 함수로 나타내게 되는데, 이런 시계열 분석 모델을 사용할 때 매개변수의 추정 과정이 필수적으로 요구된다. 일반적으로 매개변수를 추정하는 방법에는 확률적근사법(stochastic approximation), 최소제곱법(method of least square), 자기상관법(method of autocorrelation method), 최우도법(method of maximum likelihood) 등이 있다. AR Model에서 가장 많이 사용되는 최우도법은 표본크기가 충분히 클 때 가장 효율적인 방법으로 평가되지만 수치적으로 해를 구하는 과정이 복잡한 경우가 많으며, 해를 구하지 못하는 어려움이 따르기도 한다. 또한 표본 크기가 작을 때 일반적으로 잘 일치하지 않은 결과를 얻게 된다. 우리나라의 강우, 유량 등의 자료는 자료의 수가 적은 경우가 많기 때문에 최우도법을 통한 매개변수 추정 시 불확실성이 내재되어있지만 그것을 정량적으로 제시하는데 한계가 있다. 본 연구에서는 AR Model의 매개변수 추정 시 Bayesian 기법으로 매개변수의 사후분포(posterior distribution)를 제공하여 매개변수의 불확실성 구간을 정량적으로 표현하게 됨으로써, 시계열 분석을 통해 보다 신뢰성 있는 예측치를 얻을 수 있으리라 판단된다.

  • PDF

Reactor Neutron Noise Analysis using AR Spectral Estimation (AR 스펙트럼 추정법을 이용한 원자로 중성자 잡음 신호 해석)

  • Sim, Cheul-Muu;Hwang, Tae-Jin;Baik, Heung-Ki
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.5
    • /
    • pp.83-91
    • /
    • 1997
  • A reactor vibration monitoring has been performed using neutron noise obtained from excore detectors for the safety operation, Traditionally, the spectral estimator based on Fourier analysis has been widely used in the noise analysis of the reactor system. If the bias is too severe, the resolution would not be adequate for a given application. One major motivation for the current interests in the parametric approach to spectral estimation is the apparent higher resolution achievable with these modern techniques. In considering an unbias, a consistency, an efficency, and a minimum lower bound of the statictic estimation, an AR model is appropriate for noise spectral estimation with sharp peaks but not deep valley. In order to select an appropriate model order, the lag value of autocorrleaton function is applied. Burg method to trace the vibration mode of RPV internal is the most sucuessful.

  • PDF