• Title/Summary/Keyword: AMBA AHB bus

Search Result 30, Processing Time 0.027 seconds

SOC Bus Transaction Verification Using AMBA Protocol Checker

  • Lee, Kab-Joo;Kim, Si-Hyun;Hwang, Hyo-Seon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.2 no.2
    • /
    • pp.132-140
    • /
    • 2002
  • This paper presents an ARM-based SOC bus transaction verification IP and the usage experiences in SOC designs. The verification IP is an AMBA AHB protocol checker, which captures legal AHB transactions in FSM-style signal sequence checking routines. This checker can be considered as a reusable verification IP since it does not change unless the bus protocol changes. Our AHB protocol checker is designed to be scalable to any number of AHB masters and reusable for various AMBA-based SOC designs. The keys to the scalability and the reusability are Object-Oriented Programming (OOP), virtual port, and bind operation. This paper describes how OOP, virtual port, and bind features are used to implement AHB protocol checker. Using the AHB protocol checker, an AHB simulation monitor is constructed. The monitor checks the legal bus arbitration and detects the first cycle of an AHB transaction. Then it calls AHB protocol checker to check the expected AHB signal sequences. We integrate the AHB bus monitor into Verilog simulation environment to replace time-consuming visual waveform inspection, and it allows us to find design bugs quickly. This paper also discusses AMBA AHB bus transaction coverage metrics and AHB transaction coverage analysis. Test programs for five AHB masters of an SOC, four channel DMAs and a host interface unit are executed and transaction coverage for DMA verification is collected during simulation. These coverage results can be used to determine the weak point of test programs in terms of the number of bus transactions occurred and guide to improve the quality of the test programs. Also, the coverage results can be used to obtain bus utilization statistics since the bus cycles occupied by each AHB master can be obtained.

XSNP: An Extended SaC Network Protocol for High Performance SoC Bus Architecture (XSNP: 고성능 SoC 버스를 위한 확장된 SoC 네트워크 프로토콜)

  • Lee Chan-Ho;Lee Sang-Hun;Kim Eung-Sup;Lee Hyuk-Jae
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.8
    • /
    • pp.554-561
    • /
    • 2006
  • In recent years, as SoC design research is actively conducted, a large number of IPs are included in a system. Various bus protocols and bus architectures are designed to increase IP reusability. Among them, the AMBA AHB became a de facto standard although it is somewhat inadequate for a large scale SoC. We proposed SNP and SNA, high performance on-chip-bus protocol and architecture, respectively, to solve the problem of the conventional shared buses. However, it seems to be imperative that the new on-chip-bus system support AMBA-compatible IPs for a while since there are a lot of IPs with AMBA interface. In this paper, we propose an extended SNP specification and a corresponding SNA component to support ABMA-compatible IPs used in SNA - based system. We extend the phase of the SNP by 1 bit to add new 8 phases to support communication based on AMBA protocol without penalty of elongated cycle latency. The ARB-to -XSNP converter translates the protocol between AHB and SNP to attach AMBA -compatible IPs to SNA based system. We show that AMBA IPs can communicate through SNP without any degradation of performance using the extended SNP and AHB - to- XSNP converter.

Design and Implementation of e2eECC for Automotive On-Chip Bus Data Integrity (차량용 온칩 버스의 데이터 무결성을 위한 종단간 에러 정정 코드(e2eECC)의 설계 및 구현)

  • Eunbae Gil;Chan Park;Juho Kim;Joonho Chung;Joosock Lee;Seongsoo Lee
    • Journal of IKEEE
    • /
    • v.28 no.1
    • /
    • pp.116-122
    • /
    • 2024
  • AMBA AHB-Lite bus is widely used in on-chip bus protocol for low-power and cost-effective SoC. However, it lacks built-in error detection and correction for end-to-end data integrity. This can lead to data corruption and system instability, particularly in harsh environments like automotive applications. To mitigate this problem, this paper proposes the application of SEC-DED (Single Error Correction-Double Error Detection) to AMBA AHB-Lite bus. It aims not only to detect errors in real-time but also to correct them, thereby enhancing end-to-end data integrity. Simulation results demonstrate real-time error detection and correction when errors occur, which bolsters end-to-end data integrity of automotive on-chip bus.

High Performance SoC On-chip-bus Architecture with Multiple Channels and Simultaneous Routing (다중 채널과 동시 라우팅 기능을 갖는 고성능 SoC 온 칩 버스 구조)

  • Lee, Sang-Hun;Lee, Chan-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.4
    • /
    • pp.24-31
    • /
    • 2007
  • Up to date, a lot of bus protocol and bus architecture are released though most of them are based on the shared bus architecture and inherit the limitation of performance. SNP (SoC Network Protocol), and hence, SNA (SoC Network Architecture) which are high performance on-chip-bus protocol and architecture, respectively, have been proposed to solve the problems of the conventional shared bus. We refine the SNA specification and improve the performance and functionality. The performance of the SNA is improved by supporting simultaneous routing for bus request of multiple masters. The internal routing logic is also improved so that the gate count is decreased. The proposed SNA employs XSNP (extended SNP) that supports almost perfect compatibility with AMBA AHB protocol without performance degradation. The hardware complexity of the improved SNA is not increased much by optimizing the current routing logic. The improved SNA works for IPs with the original SNP at its best performance. In addition, it can also replace the AMBA AHB or interconnect matrix of a system, and it guarantees simultaneous multiple channels. That is, the existing AMBA system can show much improved performance by replacing the AHB or the interconnect matrix with the SNA. Thanks to the small number of interconnection wires, the SNA can be used for the off-chip bus system, too. We verify the performance and function of the proposed SNA and XSNP simulation and emulation.

An Ameliorated Design Method of ML-AHB BusMatrix

  • Hwang, Soo-Yun;Jhang, Kyoung-Sun;Park, Hyeong-Jun;Bae, Young-Hwan;Cho, Han-Jin
    • ETRI Journal
    • /
    • v.28 no.3
    • /
    • pp.397-400
    • /
    • 2006
  • The multi-layer advanced high-performance bus (ML-AHB) BusMatrix proposed by ARM is an excellent architecture for applying embedded systems with low power. However, there is one clock cycle delay for each master in the ML-AHB BusMatrix of the advanced microcontroller bus architecture (AMBA) design kit (ADK) whenever a master starts new transactions or changes the slave layers. In this letter, we propose an improved design method to remove the one clock cycle delay in the ML-AHB BusMatrix of an ADK. We also remarkably reduce the total area and power consumption of the ML-AHB BusMatrix of an ADK with the elimination of the heavy input stages.

  • PDF

Multi-standard Video Codec on Embedded System (임베디드 시스템에서의 다중 표준 영상 코덱)

  • Kim, Ki-Chul;Kim, Min
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.40 no.4
    • /
    • pp.214-221
    • /
    • 2003
  • This paper shows an implementation of video codec (coder/decoder) on an embedded system. The video codec supports both H.261 and H.263 standards. For efficient real-time processing, the video codec is partitioned into a software module and a hardware module. Both modules are codesigned on an embedded system. The software module is processed on a real-time operating system and a RISC processor. It cooperates with the hardware module to compress and decompress images in real time. AMBA (Advanced Microcontroller Bus Architecture) AHB (Advanced High-performance Bus) is used as the system bus. The hardware module works both as AHB masters and as AHB slaves. The encoder part of the hardware module operates in a pipelines mode to compress images in real time. The video codec compresses 15 CIF frames and simultaneously decompresses 15 CIF frames in a second according to H.261 or H.263 standard at 33 MHz frequency.

A Study on Automatic Interface Generation for Communication between AMBA Bus and IPs (AMBA 버스와 IP간의 통신을 위한 인터페이스 자동생성에 관한 연구)

  • 서형선;이서훈;황선영
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.4A
    • /
    • pp.390-398
    • /
    • 2004
  • This paper describes a study on the automatic generation system of the interface for communication among AMBA bus and IPs with different protocols. Employing an extended STG, the proposed system generates the interface modules required for the communication among IPs with different protocols. For an example system, the interface module for communication between AMBA AHB bus and a video decoder has been generated and verified in its functionality. The area and latency have been compared with the manually designed interface. For burst-mode communication, the generated interface module shows the comparable performance with the manually designed module. For single-mode communication, the generated interface module shows a slightly worse performance than the manually designed module. However, the increased area is negligible considering the size of the IP.

Implementation of ISA Bus Protocol Converter as an AHB Slave (AHB Slave를 위한 ISA 버스 프로토콜 변환기 구현)

  • 최상익;강신욱;박향숙
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04a
    • /
    • pp.919-921
    • /
    • 2004
  • 최근 임베디드 시스템 설계에서 저전력 소모와 SoC가 주된 관심사가 되면서, ARM 프로세서와 AMBA 버스가 각광을 받고 있다. AMBA 버스가 고속 모듈에 대해서는 장점을 지니지만. 저속 모듈과의 인터페이스에는 많은 제약이 따른다. 따라서 속도가 서로 다른 이종 모듈간에 속도 보상을 위한 bridge 가 필요하다. 이러한 용도로 APB bridge가 표준으로 자리 매김하고 있지만, 속도가 고정되어 있기 때문에 융통성이 배제된다. 본 논문에서는 이러한 단정을 보완하기 위해, 구조가 간단하고 구현이 쉬운 ISA 방식의 bridge를 제안하여, 많은 주변장치들을 손쉽게 AHB Slave로 인터페이스 할 수 있게 만든다.

Design of AMBA AX I Slave Unit for Pipelined Arithmetic Unit (파이프라인 구조 연산회로를 위한 AMBA AXI Slave 설계)

  • Choi, Byeong-Yoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.712-713
    • /
    • 2011
  • In this paper, the AMBA AXI slave unit that can verify the pipelined arithmetic unit is proposed and the 2-stage 16-bit pipelined multiplier is introduced as design example. The proposed AXI slave unit consists of input buffer block memory, control registers, pipelined arithmetic unit, control unit, output buffer block memory, and AXI slave interface unit. The main operational procedures are divided into the following steps, such as burst-mode input data loading for the input buffer memory, programming of control registers, arithmetic operations for block data in the input buffer memory, and burst-mode output data unloading from output buffer memory to host processor. Because the proposed AXI slave unit is general structure, it can be efficiently applicable to AMBA AXI and AHB slave unit with pipelined arithmetic unit.

  • PDF

An Implementation of Bus Matrix and Testing Environments for ML AHB (1버스 매트릭스 구현 및 ML(Multi-Layer) AHB를 위한 테스트 환경)

  • 황수연;장경선
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10a
    • /
    • pp.553-555
    • /
    • 2004
  • SoC 분야에서 온 칩 버스는 전체 시스템의 성능을 결정하는 중요한 요소이다. 이에 따라 최근 ARM 사에서는 고성능 온 칩 버스 구조인 ML(Multi-Layer) AHB 버스를 제안하였다. ML AHB 버스는 저전력 임베디드 시스템에 적합한 버스 구조로써 현재 널리 사용되고 있다. 하지만, 고가이기 때문에 ADK(AMBA$^{TM}$ Design kit) 구매에 대한 부담이 적지 않다. 본 논문은 ML AHB의 버스 구조인 버스 매트릭스 구현 및 ADK에서 제공되지 않는 테스트 환경 즉, Protocol Checker 및 Performance Monitor Module 구현에 관한 것이다.

  • PDF