• Title/Summary/Keyword: AI in Diagnosis

Search Result 239, Processing Time 0.027 seconds

Artificial intelligence in colonoscopy: from detection to diagnosis

  • Eun Sun Kim;Kwang-Sig Lee
    • The Korean journal of internal medicine
    • /
    • v.39 no.4
    • /
    • pp.555-562
    • /
    • 2024
  • This study reviews the recent progress of artificial intelligence for colonoscopy from detection to diagnosis. The source of data was 27 original studies in PubMed. The search terms were "colonoscopy" (title) and "deep learning" (abstract). The eligibility criteria were: (1) the dependent variable of gastrointestinal disease; (2) the interventions of deep learning for classification, detection and/or segmentation for colonoscopy; (3) the outcomes of accuracy, sensitivity, specificity, area under the curve (AUC), precision, F1, intersection of union (IOU), Dice and/or inference frames per second (FPS); (3) the publication year of 2021 or later; (4) the publication language of English. Based on the results of this study, different deep learning methods would be appropriate for different tasks for colonoscopy, e.g., Efficientnet with neural architecture search (AUC 99.8%) in the case of classification, You Only Look Once with the instance tracking head (F1 96.3%) in the case of detection, and Unet with dense-dilation-residual blocks (Dice 97.3%) in the case of segmentation. Their performance measures reported varied within 74.0-95.0% for accuracy, 60.0-93.0% for sensitivity, 60.0-100.0% for specificity, 71.0-99.8% for the AUC, 70.1-93.3% for precision, 81.0-96.3% for F1, 57.2-89.5% for the IOU, 75.1-97.3% for Dice and 66-182 for FPS. In conclusion, artificial intelligence provides an effective, non-invasive decision support system for colonoscopy from detection to diagnosis.

Fault diagnosis of wafer transfer robot based on time domain statistics (시간 영역 통계 기반 웨이퍼 이송 로봇의 고장 진단)

  • Hyejin Kim;Subin Hong;Youngdae Lee;Arum Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.4
    • /
    • pp.663-668
    • /
    • 2024
  • This paper applies statistical analysis methods in the time domain to the fault diagnosis of wafer transfer robots, and proposes a methodology to discern the critical characteristics of vibration and torque signals. Subsequently, principal component analysis (PCA) is applied to diminish the data's dimensionality, followed by the development of a fault diagnosis algorithm utilizing Euclidean distance and Hotelling's T-square statistics. The algorithm establishes decision boundaries to categorize failure states based on the observed data. Our findings indicate that data classification incorporating velocity parameters enhances diagnostic accuracy. This approach serves to enhance the precision and efficacy of fault diagnosis.

Linkages of nursing Diagnosis, Nursing Intervention and Nursing Outcome Classification of Breast Cancer Patients using Nursing Database (간호데이터베이스를 이용한 유방암환자의 간호진단, 간호중재, 간호결과 분류연계)

  • Chi, Mi-Kyung;Chi, Sung-Ai
    • Journal of Korean Academy of Nursing Administration
    • /
    • v.9 no.4
    • /
    • pp.651-661
    • /
    • 2003
  • Purpose: This is the descriptive research project of which purpose is to acquire the practice, research, and educational data by establishing the database after confirming, classifying, and relating the nursing diagnosis, nursing intervention, and nursing outcome of Breast cancer patients by using the Yoo Hyung-sook's(2001) related 3N database model as the tool. Method : The Nursing Data occurring on Breast cancer patients nursing process was mapped to nursing diagnosis of NANDA, nursing interventions of NIC, nursing outcomes of NOC the 3N database linkage database which is related with the nursing process that was developed by using Yoo Hyung-sook's(2001). Result : 1. The nursing diagnosis were totally 505, and 26 articles of the nursing diagnosis were applied among 149 nursing diagnosis classification systems. 2. As for the nursing intervention, 250 articles(5l.4%) of nursing intervention were applied among 486 nursing intervention classification systems. 3. Regarding the nursing outcome, 28 articles(1l.2%l of the nursing outcome were applied among 250 nursing outcome classification systems. Conclusion: The result of this research in which the relating among the nursing diagnosis, nursing intervention, and nursing outcome of Breast cancer patients by using 3N nursing database was established is thought to be applied in the research and practice as well as to be utilized in the lecture or practice of the nursing process.

  • PDF

Use of Artificial Intelligence for Reducing Unnecessary Recalls at Screening Mammography: A Simulation Study

  • Yeon Soo Kim;Myoung-jin Jang;Su Hyun Lee;Soo-Yeon Kim;Su Min Ha;Bo Ra Kwon;Woo Kyung Moon;Jung Min Chang
    • Korean Journal of Radiology
    • /
    • v.23 no.12
    • /
    • pp.1241-1250
    • /
    • 2022
  • Objective: To conduct a simulation study to determine whether artificial intelligence (AI)-aided mammography reading can reduce unnecessary recalls while maintaining cancer detection ability in women recalled after mammography screening. Materials and Methods: A retrospective reader study was performed by screening mammographies of 793 women (mean age ± standard deviation, 50 ± 9 years) recalled to obtain supplemental mammographic views regarding screening mammography-detected abnormalities between January 2016 and December 2019 at two screening centers. Initial screening mammography examinations were interpreted by three dedicated breast radiologists sequentially, case by case, with and without AI aid, in a single session. The area under the receiver operating characteristic curve (AUC), sensitivity, specificity, and recall rate for breast cancer diagnosis were obtained and compared between the two reading modes. Results: Fifty-four mammograms with cancer (35 invasive cancers and 19 ductal carcinomas in situ) and 739 mammograms with benign or negative findings were included. The reader-averaged AUC improved after AI aid, from 0.79 (95% confidence interval [CI], 0.74-0.85) to 0.89 (95% CI, 0.85-0.94) (p < 0.001). The reader-averaged specificities before and after AI aid were 41.9% (95% CI, 39.3%-44.5%) and 53.9% (95% CI, 50.9%-56.9%), respectively (p < 0.001). The reader-averaged sensitivity was not statistically different between AI-unaided and AI-aided readings: 89.5% (95% CI, 83.1%-95.9%) vs. 92.6% (95% CI, 86.2%-99.0%) (p = 0.053), although the sensitivities of the least experienced radiologists before and after AI aid were 79.6% (43 of 54 [95% CI, 66.5%-89.4%]) and 90.7% (49 of 54 [95% CI, 79.7%-96.9%]), respectively (p = 0.031). With AI aid, the reader-averaged recall rate decreased by from 60.4% (95% CI, 57.8%-62.9%) to 49.5% (95% CI, 46.5%-52.4%) (p < 0.001). Conclusion: AI-aided reading reduced the number of recalls and improved the diagnostic performance in our simulation using women initially recalled for supplemental mammographic views after mammography screening.

Analyze Technologies and Trends in Commercialized Radiology Artificial Intelligence Medical Device (상용화된 영상의학 인공지능 의료기기의 기술 및 동향 분석)

  • Chang-Hwa Han
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.6
    • /
    • pp.881-887
    • /
    • 2023
  • This study aims to analyze the development and current trends of AI-based medical imaging devices commercialized in South Korea. As of September 30, 2023, there were a total of 186 AI-based medical devices licensed, certified, and reported to the Korean Ministry of Food and Drug Safety, of which 138 were related to imaging. The study comprehensively examined the yearly approval trends, equipment types, application areas, and key functions from 2018 to 2023. The study found that the number of AI medical devices started from four products in 2018 and grew steadily until 2023, with a sharp increase after 2020. This can be attributed to the interaction between the advancement of AI technology and the increasing demand in the medical field. By equipment, AI medical devices were developed in the order of CT, X-ray, and MR, which reflects the characteristics and clinical importance of the images of each equipment. This study found that the development of AI medical devices for specific areas such as the thorax, cranial nerves, and musculoskeletal system is active, and the main functions are medical image analysis, detection and diagnosis assistance, and image transmission. These results suggest that AI's pattern recognition and data analysis capabilities are playing an important role in the medical imaging field. In addition, this study examined the number of Korean products that have received international certifications, particularly the US FDA and European CE. The results show that many products have been certified by both organizations, indicating that Korean AI medical devices are in line with international standards and are competitive in the global market. By analyzing the impact of AI technology on medical imaging and its potential for development, this study provides important implications for future research and development directions. However, challenges such as regulatory aspects, data quality and accessibility, and clinical validity are also pointed out, requiring continued research and improvement on these issues.

Analysis of Daily Internet·Gaming·Smartphone Habit and Preference Factors of Moral Machine (인터넷·게임·스마트폰생활 습관과 모랄머신 선호도 요인 분석)

  • Park, SunJu
    • Journal of The Korean Association of Information Education
    • /
    • v.24 no.1
    • /
    • pp.21-28
    • /
    • 2020
  • Technological advancements such as artificial intelligence, robots, and big data are revolutionizing the entire society. In this paper, we analyzed preliminary teachers' daily internet/gaming/smartphone habit and the difference between preference factors in gender and diagnosis group in the situation of ethical dilemma in driverless cars. The result shows most of the male students are in high risk group of daily internet/gaming usage, and male students tend to be more immersed in games compared to female students, which negatively affects their daily lives. Students who have at least one of the daily internet/gaming/smartphone habits are more likely to be classified as high-risk group in all three of daily internet/gaming/smartphone habit. Fortunately, the students perceived themselves addicted and wanted change their habits. An analysis by a moral machine of these students tells that there is no significant difference in preference between male and female students and among diagnosis groups. However, specifically in the ethical dilemma of driverless cars, all the groups of male, female, normal, high-risk showed they have priority in pedestrians over drivers, a large number of people over small, and people who obey traffic rules over who do not. The tendency was pronounced in female group and high-risk students prioritized people who are older and in lower social status.

The Investigation of Employing Supervised Machine Learning Models to Predict Type 2 Diabetes Among Adults

  • Alhmiedat, Tareq;Alotaibi, Mohammed
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.9
    • /
    • pp.2904-2926
    • /
    • 2022
  • Currently, diabetes is the most common chronic disease in the world, affecting 23.7% of the population in the Kingdom of Saudi Arabia. Diabetes may be the cause of lower-limb amputations, kidney failure and blindness among adults. Therefore, diagnosing the disease in its early stages is essential in order to save human lives. With the revolution in technology, Artificial Intelligence (AI) could play a central role in the early prediction of diabetes by employing Machine Learning (ML) technology. In this paper, we developed a diagnosis system using machine learning models for the detection of type 2 diabetes among adults, through the adoption of two different diabetes datasets: one for training and the other for the testing, to analyze and enhance the prediction accuracy. This work offers an enhanced classification accuracy as a result of employing several pre-processing methods before applying the ML models. According to the obtained results, the implemented Random Forest (RF) classifier offers the best classification accuracy with a classification score of 98.95%.

Constructing a Dataset for Assessing Skin Condition in Koreans for AI-Personalized Customized Skin Diagnosis (AI 초개인화 맞춤형 피부진단을 위한 한국인 피부상태 측정 데이터 구축)

  • Jeongho Lee;Juyeol Yang;Minseo Choi;Sang-Il Choi
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.698-700
    • /
    • 2023
  • 최근 들어, 미용 상품을 선택하기 전에 자신의 피부 타입과 상태를 정확히 파악하고 맞춤형 상품을 선택하고자 하는 수요가 증가하고 있다. 이에 따라 피부 상태 측정을 위한 기술적 요소의 중요성이 더욱 두드러지고 있다. 그러나 현재까지 피부 상태 측정을 위한 데이터셋이 한국인을 대상으로 측정한 데이터셋이 없는 실정이다. 본 연구에서는 한국인의 피부 상태를 정밀하게 분석하기 위해 고해상도 디지털 카메라로 촬영된 이미지, 정밀 피부측정 장비를 활용하여 측정한 정밀 값, 그리고 피부과 전문의가 진단한 피부상태 진단 등급 데이트를 통합하여 제공을 한다. 추후 제작한 데이터셋을 활용하여 개인 맞춤형 미용상품 추천과 개발 등 다양한 분야에 활용하고자 한다.

Immunological Mechanisms in Cutaneous Adverse Drug Reactions

  • Ai-Young Lee
    • Biomolecules & Therapeutics
    • /
    • v.32 no.1
    • /
    • pp.1-12
    • /
    • 2024
  • Adverse drug reactions (ADRs) are an inherent aspect of drug use. While approximately 80% of ADRs are predictable, immune system-mediated ADRs, often unpredictable, are a noteworthy subset. Skin-related ADRs, in particular, are frequently unpredictable. However, the wide spectrum of skin manifestations poses a formidable diagnostic challenge. Comprehending the pathomechanisms underlying ADRs is essential for accurate diagnosis and effective management. The skin, being an active immune organ, plays a pivotal role in ADRs, although the precise cutaneous immunological mechanisms remain elusive. Fortunately, clinical manifestations of skin-related ADRs, irrespective of their severity, are frequently rooted in immunological processes. A comprehensive grasp of ADR morphology can aid in diagnosis. With the continuous development of new pharmaceuticals, it is noteworthy that certain drugs including immune checkpoint inhibitors have gained notoriety for their association with ADRs. This paper offers an overview of immunological mechanisms involved in cutaneous ADRs with a focus on clinical features and frequently implicated drugs.

Technology Trends of Smart Abnormal Detection and Diagnosis System for Gas and Hydrogen Facilities (가스·수소 시설의 스마트 이상감지 및 진단 시스템 기술동향)

  • Park, Myeongnam;Kim, Byungkwon;Hong, Gi Hoon;Shin, Dongil
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.4
    • /
    • pp.41-57
    • /
    • 2022
  • The global demand for carbon neutrality in response to climate change is in a situation where it is necessary to prepare countermeasures for carbon trade barriers for some countries, including Korea, which is classified as an export-led economic structure and greenhouse gas exporter. Therefore, digital transformation, which is one of the predictable ways for the carbon-neutral transition model to be applied, should be introduced early. By applying digital technology to industrial gas manufacturing facilities used in one of the major industries, high-tech manufacturing industry, and hydrogen gas facilities, which are emerging as eco-friendly energy, abnormal detection, and diagnosis services are provided with cloud-based predictive diagnosis monitoring technology including operating knowledge. Here are the trends. Small and medium-sized companies that are in the blind spot of carbon-neutral implementation by confirming the direction of abnormal diagnosis predictive monitoring through optimization, augmented reality technology, IoT and AI knowledge inference, etc., rather than simply monitoring real-time facility status It can be seen that it is possible to disseminate technologies such as consensus knowledge in the engineering domain and predictive diagnostic monitoring that match the economic feasibility and efficiency of the technology. It is hoped that it will be used as a way to seek countermeasures against carbon emission trade barriers based on the highest level of ICT technology.