• Title/Summary/Keyword: AI 융합

Search Result 1,004, Processing Time 0.028 seconds

A Study on How to Operate the Curriculum·Comparative Division for Animation Majors in the Era of Image-generating AI: Focusing on the AI Technology Convergence Process (이미지생성AI시대 애니메이션학과의 교과·비교과 운영 안 연구: AI기술융합 과정을 중심으로)

  • Sung Won Park;You Jin Gong
    • Journal of Information Technology Applications and Management
    • /
    • v.31 no.4
    • /
    • pp.99-119
    • /
    • 2024
  • Focusing on the rapid progress of image generation AI, this study examines the changes in talent required according to changes in the production process of the content industry, and proposes an educational management plan for the subject and comparative department of the university's animation major. First, through environmental analysis, the trend of the animation content industry is analyzed in three stages, and the necessity of producing AI-adapted content talent is derived by re-establishing the talent image of the university's animation major and introducing it into rapid education. Next, we present a case designed by applying teaching methods to improve technology convergence capabilities and project-oriented capabilities by presenting subject and non-curricular cases operated in the animation department of the researcher's university. Through this, we propose the necessity of education to cultivate animation content talent who can play technical and administrative roles by utilizing various AI systems in the future. The goal of this study is to establish a cornerstone study by presenting application cases and having the status of a university as a talent supplier that can lead the content industry beyond the era of AI content production that breaks the boundaries of genres between contents. In conclusion, it is intended to propose the application of education to create value through technology convergence capabilities and project-oriented capabilities to cultivate AI-adapted content talents.

Ways to Restructure Science Convergence Elective Courses in Preparation for the High School Credit System and the 2022 Revised Curriculum (고교학점제와 2022 개정 교육과정에 대비한 과학과 융합선택과목 재구조화 방안 탐색)

  • Kwak, Youngsun
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.14 no.2
    • /
    • pp.112-122
    • /
    • 2021
  • The goal of this study is to explore ways to restructure Convergence Elective Courses in science in preparation for the high school credit system, ahead of the 2022 revised science curriculum. This study started from the problem that the 2015 revised science curriculum has not guaranteed science subject choice for students with non-science/engineering career aptitudes. To this end, a survey was conducted by randomly sampling high schools across the country. A total of 1,738 students responded to the questionnaire of 3 science elective courses such as Science History, Life & Science, Convergence Science. In addition, in-depth interviews with 12 science teachers were conducted to examine the field operation of these three courses, which will be classified and revised as Convergence Elective subjects in the 2022 revised curriculum. According to the results of the study, high school students perceive these three courses as science literacy courses, and find these difficult to learn due to lack of personal interest, and difficulties in content itself. The reason students choose these three courses is mainly because they have aptitude for science, or these courses have connection with their desired career path. Teachers explained that students mainly choose Life & Science, and both teachers and students avoid Science History because the course content is difficult. Based on the research results, we suggested ways to restructure Convergence Electives for the 2022 revised curriculum including developing convergence electives composed of interdisciplinary convergence core concepts with high content accessibility, developing convergence electives with core concepts related to AI or advanced science, developing module-based courses, and supporting professional development of teachers who will teach interdisciplinary convergence electives.

Analysis of the Current Status of the AI Major Curriculum at Universities Based on Standard of AI Curriculum

  • Kim, Han Sung;Kim, Doohyun;Kim, Sang Il;Lee, Won Joo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.3
    • /
    • pp.25-31
    • /
    • 2022
  • The purpose of this study is to explore the implications for the systematic operation of the AI curriculum by analyzing the current status of the AI major curriculum in universities. To this end, This study analyzed the relevant curriculum of domestic universities(a total of 51 schools) and overseas QS Top 10 universities based on the industry demand-based standard of AI major curriculum developed through prior research. The main research results are as follows. First, in the case of domestic universities, Python-centered programming subjects were lacking. Second, there were few subjects for advanced learning such as AI application and convergence. Third, the subjects required to perform the AI developer job were insufficient. Fourth, in the case of colleges, the ratio of AI mathematics-related subjects was low. Based on these results, this study presented implications for the systematic operation of the AI major education.

A Study on Vehicle License Plates and Character Sorting Algorithms in YOLOv5 (YOLOv5에서 자동차 번호판 및 문자 정렬 알고리즘에 관한 연구)

  • Jang, Mun-Seok;Ha, Sang-Hyun;Jeong, Seok-Chan
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.5
    • /
    • pp.555-562
    • /
    • 2021
  • In this paper, we propose a sorting method for extracting accurate license plate information, which is currently used in Korea, after detecting objects using YOLO. We propose sorting methods for the five types of vehicle license plates managed by the Ministry of Land, Infrastructure and Transport by classifying the plates with the number of lines, Korean characters, and numbers. The results of experiments with 5 license plates show that the proposed algorithm identifies all license plate types and information by focusing on the object with high reliability score in the result label file presented by YOLO and deleting unnecessary object information. The proposed method will be applicable to all systems that recognize license plates.

Quality Evaluation of Chest X-ray Images using Region Segmentation based on 3D Histogram (3D 히스토그램 기반 영역분할을 이용한 흉부 X선 영상 품질 평가)

  • Choi, Hyeon-Jin;Bea, Su-Bin;Park, Ye-Seul;Lee, Jung-Won
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.903-906
    • /
    • 2021
  • 인공지능 기술 발전으로, 의료영상 분야에서도 딥러닝 기반 질병 진단 연구가 활발히 진행되고 있다. 딥러닝 모델 개발 시, 학습 데이터 품질은 모델의 성능과 신뢰성에 매우 큰 영향을 미친다. 그러나 의료 분야의 경우 도메인 지식에 대한 진입 장벽이 높아 개발자가 학습에 사용되는 의료영상 데이터의 품질을 평가하기 어렵다. 이로 인해, 많은 의료영상 분야에서는 각 분야의 특성(질병의 종류, 관찰 아나토미 등)에 따른 영상 품질 평가 방법을 제시해왔다. 그러나 기존의 방법은 특정 질병에 초점이 맞춰져, 일반화된 품질 평가 기준을 제시하고 있지 않다. 따라서 본 논문에서는 대부분의 흉부 질환을 진단하기 위한 흉부 X선 영상의 품질을 평가할 수 있는 기준을 제안한다. 우선, 흉부 X선 영상을 대상으로 관찰된 영역인 심장, 횡격막, 견갑골, 폐 등을 분할하여, 3D 히스토그램을 기반으로 각 영역별 통계적인 정밀 품질 평가 기준을 제안한다. 본 연구에서는 JSRT, Chest 14의 오픈 데이터셋을 활용하여 적용 실험을 수행하였으며, 민감도는 97.6%, 특이도는 92.8%의 우수한 성능을 확인하였다.

DCGAN-based Emoji Generation exploiting Adjustment of Latent vector Representation (Latent vector 분포 조정을 활용한 DCGAN 기반 이모지 생성 기법)

  • Yun-Gyeong Song;Yu-Jin Ha;A-Yeong Seong;Gun-Woo Kim
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.05a
    • /
    • pp.603-605
    • /
    • 2023
  • 최근 SNS 의 발달로 인해 자신의 감정을 빠르고 효과적으로 전달할 수 있는 이모지의 중요성이 커지고 있다. 하지만 이모지를 수동으로 생성하기 위해서 시간과 비용이 많이 들고 자신의 감정에 맞는 이모지를 찾아야 하며 해당 이모지가 없을 수 있다. 기존 DCGAN 을 활용한 이모지 자동 생성연구에서는 부족한 데이터셋으로 인해 G(Generator)와 D(Discriminator)가 동등하게 학습하지 못해서 두 모델 간 성능 차이가 발생한다. D 가 G 보다 최적해에 빠르게 수렴하여 G 가 학습이 되지 않아 낮은 품질의 이모지를 생성하는 불안정 문제가 발생한다. 이 문제를 해결하기 위해 본 논문에서는 Latent vector 분포를 데이터셋에 맞게 조정하여 적은 데이터로 G 에서 안정적으로 학습할 수 있게 하는 G 구조와 다양한 이모지 생성을 위한 Latent vector 평균 조정 기법을 제안한다. 비교 실험 결과 불안정 문제를 개선하였고 FID 와 IS 수치를 통해 성능 개선 효과를 검증했다.

A Study on the Generative AI users' WOM : Focusing on the Mediation Effect of Continuous Use Intention

  • Byoung Jo HWANG;Yoon Hwang JU;Hoe-Chang YANG
    • The Journal of Economics, Marketing and Management
    • /
    • v.12 no.5
    • /
    • pp.75-89
    • /
    • 2024
  • Purpose: This study applies the Unified Theory of Acceptance and Use of Technology (UTAUT) to explore the impact of ChatGPT users' technology acceptance (performance expectancy, effort expectancy, and social influence) on WOM. Research design, data, and methodology: A survey was conducted targeting ChatGPT users in their 20s or older in Korea and used for analysis. Testing of research hypotheses is performed using SPPS and AMOS. Results: First, ChatGPT users' technology acceptance (performance expectancy, effort expectancy, social influence) was found to have a positive effect on continuous use intention. Second, ChatGPT users' continuous use intention was found to have a positive effect on WOM. Third, ChatGPT users' continuous use intention ChatGPT was found to have a full or partial mediation effect on the relationship between technology acceptance and WOM. Conclusions: These results mean that ChatGPT's outstanding functional utility, convenience of use, and recommendations from people around them have a significant impact on the continuous use intention ChatGPT and WOM. As Generative AI becomes routine, disruptive innovation through Retailtech is expected to promote changes in distribution. This study confirmed the relationship between continuance use/WOM and technology acceptance. Distribution companies need to improve efficiency/convenience using Generative AI and implement various WOM marketing.

Pradiction of MMTIC Personality Analysis using CNN (CNN을 활용한 MMTIC 성격분석 예측)

  • Kim, Kyungy-Yeul;Yang, Yeong-Bo;Kim, Mi-ra;Park, Ji Su;Kim, Jihie
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.05a
    • /
    • pp.579-582
    • /
    • 2022
  • 청소년의 성격유형을 분석할 때 소셜미디어 데이터를 활용하여 텍스트 처리로 분석하는 연구는 많이 알려져 있다. 그러나 이미지를 사용하여 성격유형을 분석한 연구는 미비하다. 본 연구는 청소년의 발테그 그림검사로 표현된 이미지를 데이터로 사용하고, CNN을 활용하여 MMTIC의 16가지 청소년의 성격유형을 예측한다. 연구 대상은 중학교 재학생을 대상으로 한다. MMTIC에서 U-band를 제외한 340명의 학생으로 2012년 4월부터 2013년 3월까지 조사하였다. 연구 결과 CNN을 사용하였을 때 21.6% 예측율을 보였으며, CNN Ensemble을 적용하였을 때 23.1%로 2.5%가 증가한다.

A study on data preprocessing method for conversational query-based fashion recommendation system (대화질의 기반 패션 추천시스템을 위한 데이터 전처리 방법에 관한 연구)

  • Choi, Chul-woong;Yeom, Sung-woong;Kim, Kyung-baek
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.815-818
    • /
    • 2021
  • 현재 대부분의 패션 추천시스템은 프로필 또는 설문조사를 통해 수집 된 사용자의 정적 정보를 활용하고 있다. 사용자의 정적 정보는 매우 한정적이며 이를 활용하여 다양한 환경에 적합한 패션 코디셋을 추천하기란 매우 어렵다. AI코디네이터와 사용자간의 지속적인 대화가 담긴 대화질의 데이터셋을 사용하면 사용자의 상황과 환경을 고려하여 개인에게 최적화 된 패션 코디셋을 추천할 수 있다. 본 논문에서는 한국전자통신연구원(ETRI)에서 제공하는 AI 패션 코디네이터와 사용자의 대화 정보가 담긴 FASCODE 데이터셋을 사용하여 사용자의 발화에 따라 의상을 추천하는 인공지능 모델을 위한 대화질의 데이터 전처리 방법을 제안한다.

Multi Agent Multi Action system for AI care service for elderly living alone based on radar sensor (레이더 센서 기반 독거노인 AI 돌봄 서비스를 위한 다중 에이전트 다중 액션 시스템)

  • Chae-Byeol Lee;Kwon-Taeg Choi;Jung-HO Ahn;Kyu-Chang Jang
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.67-68
    • /
    • 2023
  • 본 논문에서 제안한 Multi Agent Multi Action은 기존의 대화형 시스템 방식인 Single Agent Single Action 구조에 비해 확장성을 갖춘 대화 시스템을 구현하는 방식이다. 시스템을 여러 에이전트로 분할하고, 각 에이전트가 특정 액션에 대한 처리를 담당함으로써 보다 유연하고 효율적인 대화형 시스템을 구현할 수 있으며, 다양한 작업에 특화된 에이전트를 그룹화함으로써 작업의 효율성을 극대화하고, 사용자 경험을 향상 시킬 수 있다.

  • PDF