• Title/Summary/Keyword: AI 기법

Search Result 586, Processing Time 0.024 seconds

Improvement of recommendation system using attribute-based opinion mining of online customer reviews

  • Misun Lee;Hyunchul Ahn
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.12
    • /
    • pp.259-266
    • /
    • 2023
  • In this paper, we propose an algorithm that can improve the accuracy performance of collaborative filtering using attribute-based opinion mining (ABOM). For the experiment, a total of 1,227 online consumer review data about smartphone apps from domestic smartphone users were used for analysis. After morpheme analysis using the KKMA (Kkokkoma) analyzer and emotional word analysis using KOSAC, attribute extraction is performed using LDA topic modeling, and the topic modeling results for each weighted review are used to add up the ratings of collaborative filtering and the sentiment score. MAE, MAPE, and RMSE, which are statistical model performance evaluations that calculate the average accuracy error, were used. Through experiments, we predicted the accuracy of online customers' app ratings (APP_Score) by combining traditional collaborative filtering among the recommendation algorithms and the attribute-based opinion mining (ABOM) technique, which combines LDA attribute extraction and sentiment analysis. As a result of the analysis, it was found that the prediction accuracy of ratings using attribute-based opinion mining CF was better than that of ratings implementing traditional collaborative filtering.

Intelligent Bridge Safety Prediction Edge System (지능형 교량 안전성 예측 엣지 시스템)

  • Jinhyo Park;Taejin Lee;Yong-Geun Hong;Joosang Youn
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.12
    • /
    • pp.357-362
    • /
    • 2023
  • Bridges are important transportation infrastructure, but they are subject to damage and cracking due to various environmental factors and constant traffic loads, which accelerate their aging. With many bridges now older than their original construction, there is a need for systems to ensure safety and diagnose deterioration. Bridges are already utilizing structural health monitoring (SHM) technology to monitor the condition of bridges in real time or periodically. Along with this technology, the development of intelligent bridge monitoring technology utilizing artificial intelligence and Internet of Things technology is underway. In this paper, we study an edge system technique for predicting bridge safety using fast Fourier transform and dimensionality reduction algorithm for maintenance of aging bridges. In particular, unlike previous studies, we investigate whether it is possible to form a dataset using sensor data collected from actual bridges and check the safety of bridges.

Retransmission with Transmission Quantity Allocation for Energy Harvesting Wireless Sensor Networks

  • Gun-Hee Kim;Ikjune Yoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.6
    • /
    • pp.175-182
    • /
    • 2024
  • In wireless sensor networks, batteries limit lifespan, and heavy data transmission around the sink causes the hotspot problem. To address this, data collection amounts are allocated to child nodes to limit transmission. However, this approach has issues with nodes far from the sink having excessive energy and failing to transmit the allocated amount due to data transmission errors. This paper proposes a method to prevent sensor data loss through error recovery via retransmission. The method ensures that each node's retransmission volume stays within its allocated data amount and energy limits, using excess energy for error recovery. Simulations show that this technique effectively recovers data transmission errors, collects data, minimizes energy depletion around the sink, and increases data collection rates.

Social Impacts of IoT: Job Prospects through Scenario Planning (사물인터넷의 사회적 영향: 시나리오 플래닝을 통한 일자리 영향 전망)

  • Soyoung Yoo;Ingoo Han
    • Information Systems Review
    • /
    • v.18 no.4
    • /
    • pp.173-187
    • /
    • 2016
  • This study on the social effects of Internet of Things (IoTs) provides an overview of future job prospects through the scenario planning approach, highlighting the challenges and opportunities that IoTs will bring in the future. IoTs and the related field of technological innovations have become increasingly important in both academic and business communities in the past few years because of computing power breakthrough and its price drop. IoTs enables people to deal with routine works efficiently and challenges them even in non-routine and/or cognitive tasks, which are considered a unique area for individuals. The scenario planning analysis helps us to define the uncertain boundary and to estimate the potential opportunities and inherent threats to provide decision makers with a mind map on how the development of IoTs can influence employment. To assess the potential effects on jobs described in our scenarios, we briefly examine the local structure of employment and discuss which careers are expected to decline or grow in particular among the 52 standard occupational classifications in Korea.

Timely Sensor Fault Detection Scheme based on Deep Learning (딥 러닝 기반 실시간 센서 고장 검출 기법)

  • Yang, Jae-Wan;Lee, Young-Doo;Koo, In-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.1
    • /
    • pp.163-169
    • /
    • 2020
  • Recently, research on automation and unmanned operation of machines in the industrial field has been conducted with the advent of AI, Big data, and the IoT, which are the core technologies of the Fourth Industrial Revolution. The machines for these automation processes are controlled based on the data collected from the sensors attached to them, and further, the processes are managed. Conventionally, the abnormalities of sensors are periodically checked and managed. However, due to various environmental factors and situations in the industrial field, there are cases where the inspection due to the failure is not missed or failures are not detected to prevent damage due to sensor failure. In addition, even if a failure occurs, it is not immediately detected, which worsens the process loss. Therefore, in order to prevent damage caused by such a sudden sensor failure, it is necessary to identify the failure of the sensor in an embedded system in real-time and to diagnose the failure and determine the type for a quick response. In this paper, a deep neural network-based fault diagnosis system is designed and implemented using Raspberry Pi to classify typical sensor fault types such as erratic fault, hard-over fault, spike fault, and stuck fault. In order to diagnose sensor failure, the network is constructed using Google's proposed Inverted residual block structure of MobilieNetV2. The proposed scheme reduces memory usage and improves the performance of the conventional CNN technique to classify sensor faults.

Artificial Intelligence Algorithms, Model-Based Social Data Collection and Content Exploration (소셜데이터 분석 및 인공지능 알고리즘 기반 범죄 수사 기법 연구)

  • An, Dong-Uk;Leem, Choon Seong
    • The Journal of Bigdata
    • /
    • v.4 no.2
    • /
    • pp.23-34
    • /
    • 2019
  • Recently, the crime that utilizes the digital platform is continuously increasing. About 140,000 cases occurred in 2015 and about 150,000 cases occurred in 2016. Therefore, it is considered that there is a limit handling those online crimes by old-fashioned investigation techniques. Investigators' manual online search and cognitive investigation methods those are broadly used today are not enough to proactively cope with rapid changing civil crimes. In addition, the characteristics of the content that is posted to unspecified users of social media makes investigations more difficult. This study suggests the site-based collection and the Open API among the content web collection methods considering the characteristics of the online media where the infringement crimes occur. Since illegal content is published and deleted quickly, and new words and alterations are generated quickly and variously, it is difficult to recognize them quickly by dictionary-based morphological analysis registered manually. In order to solve this problem, we propose a tokenizing method in the existing dictionary-based morphological analysis through WPM (Word Piece Model), which is a data preprocessing method for quick recognizing and responding to illegal contents posting online infringement crimes. In the analysis of data, the optimal precision is verified through the Vote-based ensemble method by utilizing a classification learning model based on supervised learning for the investigation of illegal contents. This study utilizes a sorting algorithm model centering on illegal multilevel business cases to proactively recognize crimes invading the public economy, and presents an empirical study to effectively deal with social data collection and content investigation.

  • PDF

A Study on Design and Implementation of Driver's Blind Spot Assist System Using CNN Technique (CNN 기법을 활용한 운전자 시선 사각지대 보조 시스템 설계 및 구현 연구)

  • Lim, Seung-Cheol;Go, Jae-Seung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.2
    • /
    • pp.149-155
    • /
    • 2020
  • The Korea Highway Traffic Authority provides statistics that analyze the causes of traffic accidents that occurred since 2015 using the Traffic Accident Analysis System (TAAS). it was reported Through TAAS that the driver's forward carelessness was the main cause of traffic accidents in 2018. As statistics on the cause of traffic accidents, 51.2 percent used mobile phones and watched DMB while driving, 14 percent did not secure safe distance, and 3.6 percent violated their duty to protect pedestrians, representing a total of 68.8 percent. In this paper, we propose a system that has improved the advanced driver assistance system ADAS (Advanced Driver Assistance Systems) by utilizing CNN (Convolutional Neural Network) among the algorithms of Deep Learning. The proposed system learns a model that classifies the movement of the driver's face and eyes using Conv2D techniques which are mainly used for Image processing, while recognizing and detecting objects around the vehicle with cameras attached to the front of the vehicle to recognize the driving environment. Then, using the learned visual steering model and driving environment data, the hazard is classified and detected in three stages, depending on the driver's view and driving environment to assist the driver with the forward and blind spots.

Molecular Cloning of cDNA Encoding a Putative Eugenol Synthase in Tomato (Solanum lycopersicum 'Micro-Tom') and Prediction of 3D Structure and Physiochemical Properties (토마토 'Micro-Tom' 과실의 eugenol synthase 유전자 클로닝, 단백질의 3차 구조 및 생리화학적 특성 예측)

  • Kang, Seung-Won;Seo, Sang-Gyu;Lee, Tai-Ho;Lee, Gung-Pyo
    • Journal of agriculture & life science
    • /
    • v.46 no.4
    • /
    • pp.9-20
    • /
    • 2012
  • Eugenol is a volatile compound synthesized by eugenol synthase in various plants and belongs to phenylpropene compounds. However, characteristics of eugenol synthase in tomato has not been known. Therefore, we cloned a full length cDNA of a putative eugenol synthase from tomato 'Micro-Tom' using rapid amplification of cDNA ends (RACE) technique and named a clone SlEGS. Open reading frame of SlEGS was 921bp long and its deduced amino acid sequence was 307bp. The BLAST analysis indicated that SlEGS shared high similarity with PhEGS1 (67.1%) and CbEGS2 (69.4%). Amino acid composition of SlEGS was determined by CLC genomics workbench tool and 3D structure of SlEGS was constructed by homology modeling using Swiss-PDB viewer and validated using PROCHECK and ProSA-web tool. In addition, the physiochemical properties of SlEGS was evaluated using ExPASy's ProtParam tool. Molecular weight was 33.93kDa and isoelectric point was 5.85 showing acidic nature. Other properties such as extinction coefficient, instability index, aliphatic index, and grand average hydropathy was also analyzed.

Development of Heat Demand Forecasting Model using Deep Learning (딥러닝을 이용한 열 수요예측 모델 개발)

  • Seo, Han-Seok;Shin, KwangSup
    • The Journal of Bigdata
    • /
    • v.3 no.2
    • /
    • pp.59-70
    • /
    • 2018
  • In order to provide stable district heat supplying service to the certain limited residential area, it is the most important to forecast the short-term future demand more accurately and produce and supply heat in efficient way. However, it is very difficult to develop a universal heat demand forecasting model that can be applied to general situations because the factors affecting the heat consumption are very diverse and the consumption patterns are changed according to individual consumers and regional characteristics. In particular, considering all of the various variables that can affect heat demand does not help improve performance in terms of accuracy and versatility. Therefore, this study aims to develop a demand forecasting model using deep learning based on only limited information that can be acquired in real time. A demand forecasting model was developed by learning the artificial neural network of the Tensorflow using past data consisting only of the outdoor temperature of the area and date as input variables. The performance of the proposed model was evaluated by comparing the accuracy of demand predicted with the previous regression model. The proposed heat demand forecasting model in this research showed that it is possible to enhance the accuracy using only limited variables which can be secured in real time. For the demand forecasting in a certain region, the proposed model can be customized by adding some features which can reflect the regional characteristics.

A Longitudinal Study on Customers' Usable Features and Needs of Activity Trackers as IoT based Devices (사물인터넷 기반 활동량측정기의 고객사용특성 및 욕구에 대한 종단연구)

  • Hong, Suk-Ki;Yoon, Sang-Chul
    • Journal of Internet Computing and Services
    • /
    • v.20 no.1
    • /
    • pp.17-24
    • /
    • 2019
  • Since the information of $4^{th}$ Industrial Revolution is introduced in WEF (World Economic Forum) in 2016, IoT, AI, Big Data, 5G, Cloud Computing, 3D/4DPrinting, Robotics, Nano Technology, and Bio Engineering have been rapidly developed as business applications as well as technologies themselves. Among the diverse business applications for IoT, wearable devices are recognized as the leading application devices for final customers. This longitudinal study is compared to the results of the 1st study conducted to identify customer needs of activity trackers, and links the identified users' needs with the well-known marketing frame of marketing mix. For this longitudinal study, a survey was applied to university students in June, 2018, and ANOVA were applied for major variables on usable features. Further, potential customer needs were identified and visualized by Word Cloud Technique. According to the analysis results, different from other high tech IT devices, activity trackers have diverse and unique potential needs. The results of this longitudinal study contribute primarily to understand usable features and their changes according to product maturity. It would provide some valuable implications in dynamic manner to activity tracker designers as well as researchers in this arena.