Molecular Cloning of cDNA Encoding a Putative Eugenol Synthase in Tomato (Solanum lycopersicum 'Micro-Tom') and Prediction of 3D Structure and Physiochemical Properties

토마토 'Micro-Tom' 과실의 eugenol synthase 유전자 클로닝, 단백질의 3차 구조 및 생리화학적 특성 예측

  • Kang, Seung-Won (BET Research Institute, Chung-Ang University) ;
  • Seo, Sang-Gyu (Natural Science Research Institute, University of Seoul) ;
  • Lee, Tai-Ho (Department of Integrative Plant Science, Chung-Ang University) ;
  • Lee, Gung-Pyo (Department of Integrative Plant Science, Chung-Ang University)
  • 강승원 (중앙대학교 생명환경연구원) ;
  • 서상규 (서울시립대학교 자연과학연구소) ;
  • 이태호 (중앙대학교 식물시스템과학전공) ;
  • 이긍표 (중앙대학교 식물시스템과학전공)
  • Received : 2012.03.08
  • Accepted : 2012.08.28
  • Published : 2012.08.30

Abstract

Eugenol is a volatile compound synthesized by eugenol synthase in various plants and belongs to phenylpropene compounds. However, characteristics of eugenol synthase in tomato has not been known. Therefore, we cloned a full length cDNA of a putative eugenol synthase from tomato 'Micro-Tom' using rapid amplification of cDNA ends (RACE) technique and named a clone SlEGS. Open reading frame of SlEGS was 921bp long and its deduced amino acid sequence was 307bp. The BLAST analysis indicated that SlEGS shared high similarity with PhEGS1 (67.1%) and CbEGS2 (69.4%). Amino acid composition of SlEGS was determined by CLC genomics workbench tool and 3D structure of SlEGS was constructed by homology modeling using Swiss-PDB viewer and validated using PROCHECK and ProSA-web tool. In addition, the physiochemical properties of SlEGS was evaluated using ExPASy's ProtParam tool. Molecular weight was 33.93kDa and isoelectric point was 5.85 showing acidic nature. Other properties such as extinction coefficient, instability index, aliphatic index, and grand average hydropathy was also analyzed.

Eugenol은 많은 식물에서 eugenol synthase에 의해 생합성되는 phenylpropene 계통의 휘발성 화합물이다. 그러나, 토마토 과실에서의 특징은 밝혀져 있지 않다. 이에 따라 토마토 'Micro-Tom'으로부터 RACE 기법을 이용하여 완전장 cDNA를 클로닝 하여, SlEGS라 명명하였다. SlEGS의 open reading frame은 921bp로, 307개의 아미노산 서열을 갖는 단백질로 번역되었다. BLAST 결과에 따라 SlEGS는 PhEGS1 및 CbEGS2와 각 67.1, 69.4%의 높은 상동성을 갖는 것으로 나타났다. CLC genomics workbench 프로그램을 이용하여 SlEGS의 아미노산 구성을 분석하였고, Swiss-PDB viewer 프로그램에서 homology modeling 기법으로 SlEGS의 3차원 단백질 구조를 구축한 후 ProSA-web 툴로 3차원 구조의 안정성을 확인 하였다. 또한 ExPASy의 ProtParam 툴을 이용하여 SlEGS의 생리화학적 특성을 분석 하였다. SlEGS의 추정 분자량은 33.93kDA이고 등전점(pI)은 5.85로 산성인 것으로 나타났다. 이와 더불어 SlEGS의 흡광 계수(EC), 불안정성 지수(II), alipathic 지수(AI), GRAVY값 등의 생리화학적 특성에 대한 분석을 실시 하였다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. Altschul, S. F., T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402. https://doi.org/10.1093/nar/25.17.3389
  2. Baldwin, E. A., J. W. Scott, M. A. Einstein, T. M. M. Malundo, B. T. Carr, R. I. Shewfelt, and K. S. Tandon. 1998. Relationship between sensory and instrumental analysis for tomato flavor. J. Amer. Soc. Hort. Sci. 123: 906-905.
  3. Buttery, R. G. 1993. Quantitative and sensory aspects of flavor of tomato and other vegetables and fruits. In Flavor science: sensible principles and techniques. Acree, T. and R. Teranishipp. 259-286. eds. ACS, Washington, D.C.
  4. Carugo, O. and P. Argos. 1997. NADP-dependent enzymes. I: conserved stereochemistry of cofactor binding. Proteins 28: 10-28. https://doi.org/10.1002/(SICI)1097-0134(199705)28:1<10::AID-PROT2>3.0.CO;2-N
  5. Emanuel, E. and A. A. Levy. 2002. Tomato mutants as tools for functional genomics. Curr. Opin. Plant Biol. 5: 112-117. https://doi.org/10.1016/S1369-5266(02)00237-6
  6. Gang, D. R., J. Wang, N. Dudareva, K. H. Nam, J. E. Simon, E. Lewinson, and E. Pichersky. 1999. Evolution of plant defense mechanisms. Relationships of phenylcoumaran benzylic ether reductases to pinoresinol-laricirelariciresinol and isoflavone reductases. J. Biol. Chem. 274: 7516-7527. https://doi.org/10.1074/jbc.274.11.7516
  7. Gasteiger, E., C. Hoogland, A. Gattiker, S. Duvaud, M. R. Wilkins, R. D. Appel, and A. Bairoch. 2005. Protein identification and analysis tools on the ExPASy Server. In The proteomics protocols handbook. Walker, J. M. pp. 571-607. eds. Human Press Inc., NJ, USA.
  8. Goff, S. A. and H. J. Klee. 2006. Plant volatile compounds: Sensory cues for health and nutritional value? Science 311: 815-819. https://doi.org/10.1126/science.1112614
  9. Gray, J. E., S. Picton, J. J. Giovannoni, and D. Grierson. 1994. The use of transgenic and naturallyoccurring mutants to understand and manipulate tomato fruit ripening. Plant, Cell Environ. 17: 557-571. https://doi.org/10.1111/j.1365-3040.1994.tb00149.x
  10. Grossman, J. 1993. Botanical pesticides in Africa. Int. Pest. Manag. Pract. 15: 1-9.
  11. Guex, N. and M. C. Peitsch. 1997. SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis 18: 2714-2723. https://doi.org/10.1002/elps.1150181505
  12. Koeduka, T., G. V. Louie, I. Orlova, C. M. Kish, M. Ibdah, C. G. Wilkerson, M. E. Bowman, T. J. Baiga, J. P. Noel, N. Dudareva, and E. Pichersky. 2008. The multiple phenylpropene synthases in both Clarkia breweri and Petunia hybrida represent two distinct protein lineages. Plant J. 54: 363-374.
  13. Laskowski R. A., M. W. MacArthur, D. S. Moss, and J. M. Thornton. 1993. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Cryst. 26: 283-291. https://doi.org/10.1107/S0021889892009944
  14. Louie, G. V., T. J. Baiga, M. E. Bowman, T. Koeduka, J. H. Talor, S. M. Spassova, E. Pichersky, and J. P. Noel. 2007. Structure and reaction mechanism of basil Eugenol Synthase, PLoS ONE 2: e993. doi:10.1371/journal.pone.0000993.
  15. Meissner R., Y. Jacobson, S. Melmed, S. Levyatuv, G. Shalev, A. Ashri, Y. Elkind, and A. A. Levy. 1997. A new model system for tomato genetics. Plant J. 12: 1465-1472. https://doi.org/10.1046/j.1365-313x.1997.12061465.x
  16. Petro-Turza, M. 1987. Flavor of tomato and tomato products. Food Rev. Int. 2: 309-351.
  17. Prasad, N. S., R. Raghavendra, B. R. Lokesh, and K. A. Naidu. 2004. Spice phenolics inhibit human PMNL 5-lipoxygenase. Prostaglandins Leukot. Essent. Fatty Acids 70: 521-528. https://doi.org/10.1016/j.plefa.2003.11.006
  18. Rullmann, J. A. C. 1996. AQUA, Computer program, Department of NMR spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, The Netherlands.
  19. Scott, J. W. and B. K. Harbaugh. 1989. Micro-Tom: A miniature dwarf tomato. Florida Agr. Expt. Sta. Circ. 370: 1-6.
  20. Sippl, M. J. 1993. Recognition of errors in threedimensional structures of proteins. Proteins 17: 355- 362. https://doi.org/10.1002/prot.340170404
  21. Verdonk, J. C., C. H. R. de Vos, H. A. Verhoeven, M. A. Haring, A. J. van Tunen, and R. C. Schuurink. 2003. Regulation of floral scent production in petunia revealed by targeted metabolomics. Phytochem. 62: 997-1008. https://doi.org/10.1016/S0031-9422(02)00707-0
  22. Wiederstein, M. and M. J. Sippl. 2007. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 35(suppl 2): W407-W410.