• Title/Summary/Keyword: AI (artificial intelligence)

Search Result 1,999, Processing Time 0.03 seconds

A Study on Establishing Scientific Guard Systems based on TVWS (TVWS 기반 과학화경계시스템 구축방안 연구)

  • Kyuyong Shin;Yuseok Kim;Seungwon Baik
    • Convergence Security Journal
    • /
    • v.23 no.4
    • /
    • pp.81-92
    • /
    • 2023
  • In recent years, the ROK military is promoting Defense Innovation 4.0 with the goal of fostering strong military based on science and technology equipped with artificial intelligence(AI) to prepare for the upcoming population cliff. In particular, at the present time of increased threats of North Korea, the South Korean military is seeking to deal with a decrease in military service resources through the introduction of a Scientific Guard System using advanced technology. TICN which is a core basic communication system to ensure the integrated combat capability of the ROK military is, however, limited to use as a based network for the emerging Scientific Guard System due to the narrow transmission bandwidth with widely spread poor reception area. To deal with this problem, this paper proposes TVWS-based Scientific Guard Systems with TVWS-based wireless network construction technology that has been available for free in Korea since 2017. The TVWS-based Scientific Guard System proposed in this paper, when compared to the existing wired network-based Scientific Guard Systems, has various advantages in terms of minimizing operational gaps, reducing construction costs, and flexibility in installation and operation.

Intention to Continue Using Chat GPT as a learning Tool for College Students: Based on the Technology Acceptance Model (대학생 학습 도구로 Chat GPT 활용에 대한 지속사용 의도: 기술수용 모델을 기반으로)

  • Noh Hyeyoung;Kim Hanju;Ku Yeong-Ae
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.933-942
    • /
    • 2024
  • With the development of AI, Chat GPT, an artificial intelligence chatbot that appeared in 2022, is rapidly spreading to a wide range of people and expanding its usefulness. This study was conducted to examine college students' intention to continue using Chat GPT using a technology acceptance model. As a result of the study, all of Chat GPT's features had a positive effect on college students' perceived usefulness and perceived ease of use. However, among the features of Chat GPT, system quality and relative advantages did not directly affect the intention to continue using it. However, it was confirmed that it had an effect when perceived usefulness and perceived ease of use were mediated. The perceived usefulness and perceived ease of Chat GPT were verified to have a positive effect on the intention to continue using it.

Feasibility of a deep learning-based diagnostic platform to evaluate lower urinary tract disorders in men using simple uroflowmetry

  • Seokhwan Bang;Sokhib Tukhtaev;Kwang Jin Ko;Deok Hyun Han;Minki Baek;Hwang Gyun Jeon;Baek Hwan Cho;Kyu-Sung Lee
    • Investigative and Clinical Urology
    • /
    • v.63 no.3
    • /
    • pp.301-308
    • /
    • 2022
  • Purpose To diagnose lower urinary tract symptoms (LUTS) in a noninvasive manner, we created a prediction model for bladder outlet obstruction (BOO) and detrusor underactivity (DUA) using simple uroflowmetry. In this study, we used deep learning to analyze simple uroflowmetry. Materials and Methods We performed a retrospective review of 4,835 male patients aged ≥40 years who underwent a urodynamic study at a single center. We excluded patients with a disease or a history of surgery that could affect LUTS. A total of 1,792 patients were included in the study. We extracted a simple uroflowmetry graph automatically using the ABBYY Flexicapture® image capture program (ABBYY, Moscow, Russia). We applied a convolutional neural network (CNN), a deep learning method to predict DUA and BOO. A 5-fold cross-validation average value of the area under the receiver operating characteristic (AUROC) curve was chosen as an evaluation metric. When it comes to binary classification, this metric provides a richer measure of classification performance. Additionally, we provided the corresponding average precision-recall (PR) curves. Results Among the 1,792 patients, 482 (26.90%) had BOO, and 893 (49.83%) had DUA. The average AUROC scores of DUA and BOO, which were measured using 5-fold cross-validation, were 73.30% (mean average precision [mAP]=0.70) and 72.23% (mAP=0.45), respectively. Conclusions Our study suggests that it is possible to differentiate DUA from non-DUA and BOO from non-BOO using a simple uroflowmetry graph with a fine-tuned VGG16, which is a well-known CNN model.

Development of multi-media multi-path Optimization Network Technology Using RNN Algorithm (RNN 알고리즘을 이용한 다매체 다중경로 최적화 네트워크 기술 개발)

  • Pokki Park;Youngdong Kim
    • Convergence Security Journal
    • /
    • v.24 no.3
    • /
    • pp.95-104
    • /
    • 2024
  • The performance capability of the future battlefield depends on whether the next-generation technology of the Fourth Industrial Revolution, called ABCMS (AI, Bigdata, Cloud, Mobile, Security), can be applied to secure innovative defense capabilities It is no exaggeration to say. In addition, the future military operation environment is rapidly changing into a net work-oriented war (NCW) in which all weapon systems mutually share battlefield information and operate in real-time within a single integrated information and communication network based on the network and is expanding to the scope of operation of the manned and unmanned complex combat system. In particular, communication networks responsible for high-speed and hyperconnectivity require high viability and efficiency in power operation based on multi-tier (defense mobile, satellite, M/W, wired) networks for the connection of multiple combat elements and smooth distribution of information. From this point of view, this study is different from conventional single-media, single-path transmission with fixed specifications, It is an artificial intelligence-based transmission technology using RNN (Recurrent Neural Networks) algorithm and load distribution during traffic congestion using available communication wired and wireless infrastructure multimedia simultaneously and It is the development of MMMP-Multi-Media Multi-Path adaptive network technology.

Comparison of Retaining Wall Displacement Prediction Performance Using Sensor Data (센서 데이터를 활용한 옹벽 변위 예측 성능 비교)

  • Sheilla Wesonga;Jang-Sik Park
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.5
    • /
    • pp.1035-1040
    • /
    • 2024
  • The main objective of inspecting structures is to ensure the safety of all entities that utilize these structures as cracks in structures if not attended to could lead to serious calamities. With that objective in mind, artificial intelligence (AI) based technologies to assist human inspectors are needed especially for retaining walls in structures. In this paper, we predict the crack displacement of retaining walls using an Polynomial Regressive (PR) analysis model, as well as Long Short Term Memory (LSTM) and Gated Recurrent Unit (GRU) deep learning models, and compare their performance. For the performance comparison, we apply multi-variable feature inputs, by utilizing temperature and rainfall data that may affect the crack displacement of the retaining wall. The training and inference data were collected through measuring sensors such as inclinometers, thermometers, and rain gauges. The results show that the multi-variable feature model had a MAE of 0.00186, 0.00450 and 0.00842, which outperformed the single variable feature model at 0.00393, 0.00556 and 0.00929 for the polynomial regression model, LSTM model and the GRU model respectively from the evaluation performed.

Modified analytical AI evolution of composite structures with algorithmic optimization of performance thresholds

  • ZY Chen;Yahui Meng;Huakun Wu;ZY Gu;Timothy Chen
    • Steel and Composite Structures
    • /
    • v.53 no.1
    • /
    • pp.103-114
    • /
    • 2024
  • This study proposes a new hybrid approach that utilizes post-earthquake survey data and numerical analysis results from an evolving finite element routing model to capture vulnerability processes. In order to achieve cost-effective evaluation and optimization, this study introduced an online data evolution data platform. The proposed method consists of four stages: 1) development of diagnostic sensitivity curve; 2) determination of probability distribution parameters of throughput threshold through optimization; 3) update of distribution parameters using smart evolution method; 4) derivation of updated diffusion parameters. Produce a blending curve. The analytical curves were initially obtained based on a finite element model used to represent a similar RC building with an estimated (previous) capacity height in the damaged area. The previous data are updated based on the estimated empirical failure probabilities from the post-earthquake survey data, and the mixed sensitivity curve is constructed using the update (subsequent) that best describes the empirical failure probabilities. The results show that the earthquake rupture estimate is close to the empirical rupture probability and corresponds very accurately to the real engineering online practical analysis. The objectives of this paper are to obtain adequate, safe and affordable housing and basic services, promote inclusive and sustainable urbanization and participation, implement sustainable and disaster-resilient buildings, sustainable human settlement planning and management. Therefore, with the continuous development of artificial intelligence and management strategy, this goal is expected to be achieved in the near future.

Development of a Synthetic Multi-Agent System;The KMITL Cadence 2003 Robotic Soccer Simulation Team, Intelligent and AI Based Control

  • Chitipalungsri, Thunyawat;Jirawatsiwaporn, Chawit;Tangchupong, Thanapon;Kittitornkun, Surin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.879-884
    • /
    • 2004
  • This paper describes the development of a synthetic multi-agent called KMITL Cadence 2003. KMITL Cadence 2003 is a robotic soccer simulation team consisting of eleven autonomous software agents. Each agent operates in a physical soccer simulation model called Robocup Soccer Server which provides fully distributed and real-time multi-agent system environment. All teammates have to cooperate to achieve the common goal of winning the game. The simulation models many aspects of the football field such as noise in ball movements, noisy sensors, unreliable communication channel between teammates and actuators, limited physical abilities and restricted communication. This paper addresses the algorithm to develop the soccer agents to perform basic actions which are scoring, passing ball and blocking the opponents effectively. The result of this development is satisfactory because the successful scoring attempts is increased from 11.1% to 33.3%, successful passing ball attempts is increased from 22.08% to 63.64%, and also, successful intercepting attempts is increased from 88% to 97.73%.

  • PDF

Analysis Method of influence of input for Image recognition result of machine learning (기계습의 영상인식결과에 대한 입력영상의 영향도 분석 기법)

  • Kim, Do-Wan;Kim, Woo-seong;Lee, Eun-hun;Kim, Hyeoncheol
    • Proceedings of The KACE
    • /
    • 2017.08a
    • /
    • pp.209-211
    • /
    • 2017
  • 기계학습은 인공지능(AI, Artificial Intelligence)의 일종으로 다른 인공지능 알고리즘이 정해진 규칙을 기반으로 주어진 임무(Task)를 해결하는 것과는 달리, 기계학습은 수집된 Data를 기반으로 최적의 솔루션을 학습한 후 미래의 값들을 예측하거나 해석하는 방법을 사용하고 있다. 더욱이 인터넷을 통한 연결성의 확대와 컴퓨터의 연산능력 발전으로 가능하게 된 Big-Data를 기반으로 하고 있어 이전의 인공지능 알고리즘에 비해 월등한 성능을 보여주고 있다. 그러나 기계학습 알고리즘이 Data를 학습할 때 학습 결과를 사람이 해석하기에 너무 복잡하여 사람이 그 내부 구조를 이해하는 것은 사실상 불가능하고, 이에 따라 학습된 기계학습 모델의 단점 또는 한계 등을 알지 못하는 문제가 있다. 본 연구에서는 이러한 블랙박스화된 기계학습 알고리즘의 특성을 이해하기 위해, 기계학습 알고리즘이 특정 입력에 대한 결과를 예측할 때 어떤 입력들로 부터 영향을 많이 받는지 그리고 어떤 입력으로부터 영향을 적게 받는지를 알아보는 방법을 소개하고 기존 연구의 단점을 개선하기 위한 방법을 제시한다.

  • PDF

Support Vector Machine Model to Select Exterior Materials

  • Kim, Sang-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.3
    • /
    • pp.238-246
    • /
    • 2011
  • Choosing the best-performance materials is a crucial task for the successful completion of a project in the construction field. In general, the process of material selection is performed through the use of information by a highly experienced expert and the purchasing agent, without the assistance of logical decision-making techniques. For this reason, the construction field has considered various artificial intelligence (AI) techniques to support decision systems as their own selection method. This study proposes the application of a systematic and efficient support vector machine (SVM) model to select optimal exterior materials. The dataset of the study is 120 completed construction projects in South Korea. A total of 8 input determinants were identified and verified from the literature review and interviews with experts. Using data classification and normalization, these 120 sets were divided into 3 groups, and then 5 binary classification models were constructed in a one-against-all (OAA) multi classification method. The SVM model, based on the kernel radical basis function, yielded a prediction accuracy rate of 87.5%. This study indicates that the SVM model appears to be feasible as a decision support system for selecting an optimal construction method.

A Study of Power Line Communication-based Smart Outlet System Expandable at Home

  • Huh, Jun-Ho;Kim, Namjug;Seo, Kyungryong
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.5
    • /
    • pp.901-909
    • /
    • 2016
  • Unprecedented attention is being given to Smart Grid, Micro Grid and Internet of Things (IoT) in the Republic of Korea recently but such systems' effect is not well experienced by the market since they require additional and costly reforms for the existing household electrical system where adaptive communication platforms are needed. As such platforms, both wireless and wire communication technologies are being considered at the moment. Usually, they include WiFi, Zigbee technologies and the latter, LAN technology. However, communication speed decline due to signal attenuation and interference during wireless communications are considered to be the major problem and the extra works involving time and costs for the LAN system construction can be another demerit. Therefore, in this paper, we have introduced a Power Line Communication-based Smart Outlet System Expandable at Home to complement these disadvantages. Proposed IoT system involves Power Line Communication (PLC) technology which is essential to constructing a Smart Grid.