• Title/Summary/Keyword: AI, Education

Search Result 861, Processing Time 0.023 seconds

Research on Development of VR Realistic Sign Language Education Content Using Hand Tracking and Conversational AI (Hand Tracking과 대화형 AI를 활용한 VR 실감형 수어 교육 콘텐츠 개발 연구)

  • Jae-Sung Chun;Il-Young Moon
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.3
    • /
    • pp.369-374
    • /
    • 2024
  • This study aims to improve the accessibility and efficiency of sign language education for both hearing impaired and non-deaf people. To this end, we developed VR realistic sign language education content that integrates hand tracking technology and conversational AI. Through this content, users can learn sign language in real time and experience direct communication in a virtual environment. As a result of the study, it was confirmed that this integrated approach significantly improves immersion in sign language learning and contributes to lowering the barriers to sign language learning by providing learners with a deeper understanding. This presents a new paradigm for sign language education and shows how technology can change the accessibility and effectiveness of education.

Analysis of the Current Status of the AI Major Curriculum at Universities Based on Standard of AI Curriculum

  • Kim, Han Sung;Kim, Doohyun;Kim, Sang Il;Lee, Won Joo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.3
    • /
    • pp.25-31
    • /
    • 2022
  • The purpose of this study is to explore the implications for the systematic operation of the AI curriculum by analyzing the current status of the AI major curriculum in universities. To this end, This study analyzed the relevant curriculum of domestic universities(a total of 51 schools) and overseas QS Top 10 universities based on the industry demand-based standard of AI major curriculum developed through prior research. The main research results are as follows. First, in the case of domestic universities, Python-centered programming subjects were lacking. Second, there were few subjects for advanced learning such as AI application and convergence. Third, the subjects required to perform the AI developer job were insufficient. Fourth, in the case of colleges, the ratio of AI mathematics-related subjects was low. Based on these results, this study presented implications for the systematic operation of the AI major education.

Analysis of generative AI's mathematical problem-solving performance: Focusing on ChatGPT 4, Claude 3 Opus, and Gemini Advanced (생성형 인공지능의 수학 문제 풀이에 대한 성능 분석: ChatGPT 4, Claude 3 Opus, Gemini Advanced를 중심으로)

  • Sejun Oh;Jungeun Yoon;Yoojin Chung;Yoonjoo Cho;Hyosup Shim;Oh Nam Kwon
    • The Mathematical Education
    • /
    • v.63 no.3
    • /
    • pp.549-571
    • /
    • 2024
  • As digital·AI-based teaching and learning is emphasized, discussions on the educational use of generative AI are becoming more active. This study analyzed the mathematical performance of ChatGPT 4, Claude 3 Opus, and Gemini Advanced on solving examples and problems from five first-year high school math textbooks. As a result of examining the overall correct answer rate and characteristics of each skill for a total of 1,317 questions, ChatGPT 4 had the highest overall correct answer rate of 0.85, followed by Claude 3 Opus at 0.67, and Gemini Advanced at 0.42. By skills, all three models showed high correct answer rates in 'Find functions' and 'Prove', while relatively low correct answer rates in 'Explain' and 'Draw graphs'. In particular, in 'Count', ChatGPT 4 and Claude 3 Opus had a correct answer rate of 1.00, while Gemini Advanced was low at 0.56. Additionally, all models had difficulty in explaining using Venn diagrams and creating images. Based on the research results, teachers should identify the strengths and limitations of each AI model and use them appropriately in class. This study is significant in that it suggested the possibility of use in actual classes by analyzing the mathematical performance of generative AI. It also provided important implications for redefining the role of teachers in mathematics education in the era of artificial intelligence. Further research is needed to develop a cooperative educational model between generative AI and teachers and to study individualized learning plans using AI.

Development of the Artificial Intelligence Literacy Education Program for Preservice Secondary Teachers (예비 중등교사를 위한 인공지능 리터러시 교육 프로그램 개발)

  • Bong Seok Jang
    • Journal of Practical Engineering Education
    • /
    • v.16 no.1_spc
    • /
    • pp.65-70
    • /
    • 2024
  • As the interest in AI education grows, researchers have made efforts to implement AI education programs. However, research targeting pre-service teachers has been limited thus far. Therefore, this study was conducted to develop an AI literacy education program for preservice secondary teachers. The research results revealed that the weekly topics included the definition and applications of AI, analysis of intelligent agents, the importance of data, understanding machine learning, hands-on exercises on prediction and classification, hands-on exercises on clustering and classification, hands-on exercises on unstructured data, understanding deep learning, application of deep learning algorithms, fairness, transparency, accountability, safety, and social integration. Through this research, it is hoped that AI literacy education programs for preservice teachers will be expanded. In the future, it is anticipated that follow-up studies will be conducted to implement relevant education in teacher training institutions and analyze its effectiveness.

Development of an AI Education Program Converging with Korean Language Subject (국어 교과 융합 AI 교육 프로그램 개발)

  • Shin, Jineson;Jo, Miheon
    • 한국정보교육학회:학술대회논문집
    • /
    • 2021.08a
    • /
    • pp.289-294
    • /
    • 2021
  • With the development of artificial intelligence, a wave of the 4th industrial revolution is taking place around the world. With the technologies such as big data and Internet of Things-based artificial intelligence, we are heading to a hyper-connected society where everything converges into one. Accordingly as educational talents in the era of artificial intelligence, we are pursuing the cultivation of creative convergence-type talents and emotional creative talents. With human creativity and emotion at the center, we should be able to collaborate with artificial intelligence and create new things by converging knowledge in various fields. By developing a program that combines humanities-oriented Korean language with engineering-oriented artificial intelligence, this research attempted to help students experience solving problems creatively by combining humanistic knowledge with engineering thinking skills. The educational program consists of two kinds of contents(i.e., "Books with AI" and "A Play with AI") and 15 classes that provide students with opportunities to solve humanities problems with artificial intelligence.

  • PDF

Development of AI Education Program for Prediction System Based on Linear Regression for Elementary School Students (선형회귀모델 기반의 초등학생용 인공지능 예측 시스템 교육 프로그램의 개발)

  • Lee, Soo Jeong;Moon, Gyo Sik
    • 한국정보교육학회:학술대회논문집
    • /
    • 2021.08a
    • /
    • pp.51-57
    • /
    • 2021
  • Quite a few elementary school teachers began to utilize AI technology in order to provide students with customized, intelligent information services in recent years. However, learning principles of AI may be as important as utilizing AI in everyday life because understanding principles of AI can empower them to buildup adaptability to changes in highly technological world. In the paper, 'Linear Regression Algorithm' is selected for teaching AI-based prediction system to solve real world problems suitable for elementary students. A simulation program written in Scratch was developed so that students can find a solution of linear regression model using the program. The paper shows that students have learned analyzing data as well as comparing the accuracy of the prediction model. Also, they have shown the ability to solve real world problems by finding suitable prediction models.

  • PDF

A Study on the Current State of Artificial Intelligence Based Coding Technologies and the Direction of Future Coding Education

  • Jung, Hye-Wuk
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.3
    • /
    • pp.186-191
    • /
    • 2020
  • Artificial Intelligence (AI) technology is used in a variety of fields because it can make inferences and plans through learning processes. In the field of coding technologies, AI has been introduced as a tool for personalized and customized education to provide new educational environments. Also, it can be used as a virtual assistant in coding operations for easier and more efficient coding. Currently, as coding education becomes mandatory around the world, students' interest in programming is heightened. The purpose of coding education is to develop the ability to solve problems and fuse different academic fields through computational thinking and creative thinking to cultivate talented persons who can adapt well to the Fourth Industrial Revolution era. However, new non-computer science major students who take software-related subjects as compulsory liberal arts subjects at university came to experience many difficulties in these subjects, which they are experiencing for the first time. AI based coding technologies can be used to solve their difficulties and to increase the learning effect of non-computer majors who come across software for the first time. Therefore, this study examines the current state of AI based coding technologies and suggests the direction of future coding education.

Review on Artificial Intelligence Education for K-12 Students and Teachers (K-12 학생 및 교사를 위한 인공지능 교육에 대한 고찰)

  • Kim, Soohwan;Kim, Seonghun;Lee, Minjeong;Kim, Hyeoncheol
    • The Journal of Korean Association of Computer Education
    • /
    • v.23 no.4
    • /
    • pp.1-11
    • /
    • 2020
  • The purpose of this study is to propose the direction of AI education in K-12 education through investigating and analyzing aspects of the purpose, content, and methods of AI education as the curriculum and teacher training factors. We collected and analyzed 9 papers as the primary literature and 11 domestic and foreign policy reports as the secondary literature. The collected literatures were analyzed by applying a descriptive reviews, and the implications were derived by analyzing the curriculum components and TPACK elements for multi-dimensional analysis. As a result of this study, AI education targets were divided into three steps: AI users, utilizer, and developers. In K-12 education, the user and utilizer stages are appropriate, and artificial intelligence literacy must be included for user education. Based on the current computing thinking ability and coding ability for utilizer education, the implication was derived that it is necessary to target the ability to create creative output by applying the functions of artificial intelligence. In addition to the pedagogical knowledge and the ability to use the platform, The teacher training is necessary because teachers need content knowledge such as problem-solving, reasoning, learning, perception, and some applied mathematics, cognitive / psychological / ethical of AI.

Differences in Preschool Children's Perceptions of Artificial Intelligence according to their Experiences with AI Robots in daycare centers (어린이집내 인공지능 로봇 사용경험 여부에 따른 유아의 인공지능 인식 차이)

  • Boram, Lee;Soojung, Kim
    • Korean Journal of Childcare and Education
    • /
    • v.19 no.2
    • /
    • pp.43-59
    • /
    • 2023
  • Objective: This study investigated the differences in preschool children's perceptions of artificial intelligence (AI) and their distribution by latent profiles according to their experience with AI robots in daycare centers. Methods: The participants included 119 five-year-old children, 52 of whom had experience with AI robots in daycare centers and 67 of whom did not. Children's perceptions of AI were measured using the Godspeed scale from Bartneck et al.(2009). Data were analyzed using a t-test, latent profile analysis, and chi-square test. Results: The results showed that compared to the inexperienced group, the experienced group reported lower levels of animacy and perceived intelligence of AI robots, indicating higher levels of AI knowledge and understanding. In addition, the experienced group had a higher probability of belonging to the 'machine recognition' type than 'organism recognition' type, although the difference was not statistically significant. Conclusion/Implications: The findings suggest that experience with AI robots in daycare centers can improve children's AI knowledge and understanding. To further enhance this effect, it is necessary to increase the number of robots put into classrooms, and to consider various teaching media that reflect children's preferences.

Use of ChatGPT in college mathematics education (대학수학교육에서의 챗GPT 활용과 사례)

  • Sang-Gu Lee;Doyoung Park;Jae Yoon Lee;Dong Sun Lim;Jae Hwa Lee
    • The Mathematical Education
    • /
    • v.63 no.2
    • /
    • pp.123-138
    • /
    • 2024
  • This study described the utilization of ChatGPT in teaching and students' learning processes for the course "Introductory Mathematics for Artificial Intelligence (Math4AI)" at 'S' University. We developed a customized ChatGPT and presented a learning model in which students supplement their knowledge of the topic at hand by utilizing this model. More specifically, first, students learn the concepts and questions of the course textbook by themselves. Then, for any question they are unsure of, students may submit any questions (keywords or open problem numbers from the textbook) to our own ChatGPT at https://math4ai.solgitmath.com/ to get help. Notably, we optimized ChatGPT and minimized inaccurate information by fully utilizing various types of data related to the subject, such as textbooks, labs, discussion records, and codes at http://matrix.skku.ac.kr/Math4AI-ChatGPT/. In this model, when students have questions while studying the textbook by themselves, they can ask mathematical concepts, keywords, theorems, examples, and problems in natural language through the ChatGPT interface. Our customized ChatGPT then provides the relevant terms, concepts, and sample answers based on previous students' discussions and/or samples of Python or R code that have been used in the discussion. Furthermore, by providing students with real-time, optimized advice based on their level, we can provide personalized education not only for the Math4AI course, but also for any other courses in college math education. The present study, which incorporates our ChatGPT model into the teaching and learning process in the course, shows promising applicability of AI technology to other college math courses (for instance, calculus, linear algebra, discrete mathematics, engineering mathematics, and basic statistics) and in K-12 math education as well as the Lifespan Learning and Continuing Education.