• Title/Summary/Keyword: A-monotone mappings

Search Result 64, Processing Time 0.018 seconds

PROXIMAL POINT ALGORITHMS BASED ON THE (A, 𝜂)-MONOTONE MAPPINGS

  • Qin, Xiaolong;Shang, Meijuan;Yuan, Qing
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.21 no.2
    • /
    • pp.147-155
    • /
    • 2008
  • In this paper, we consider proximal point algorithms based on ($A,{\eta}$)-monotone mappings in the framework of Hilbert spaces. Since ($A,{\eta}$)-monotone mappings generalize A-monotone mappings, H-monotone mappings and many other mappings, our results improve and extend the recent ones announced by [R.U. Verma, Rockafellars celebrated theorem based on A-maximal monotonicity design, Appl. Math. Lett. 21 (2008), 355-360] and [ R.T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optim. 14 (1976) 877-898] and some others.

  • PDF

A SYSTEM OF NONLINEAR VARIATIONAL INCLUSIONS WITH (A, $\eta$)-MONOTONE MAPPINGS IN HILBERT SPACES

  • Shang, Meijuan;Qin, Xiaolong
    • East Asian mathematical journal
    • /
    • v.24 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • In this paper, we introduce a system of nonlinear variational inclusions involving (A, $\eta$)-monotone mappings in the framework of Hilbert spaces. Based on the generalized resolvent operator technique associated with (A, $\eta$)-monotonicity, the approximation solvability of solutions using an iterative algorithm is investigated. Our results improve and extend the recent ones announced by many others.

  • PDF

APPROXIMATION-SOLVABILITY OF A CLASS OF A-MONOTONE VARIATIONAL INCLUSION PROBLEMS

  • Verma, Ram U.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.8 no.1
    • /
    • pp.55-66
    • /
    • 2004
  • First the notion of the A-monotonicity is applied to the approximation - solvability of a class of nonlinear variational inclusion problems, and then the convergence analysis is given based on a projection-like method. Results generalize nonlinear variational inclusions involving H-monotone mappings in the Hilbert space setting.

  • PDF

CONVERGENCE THEOREMS FOR TWO FAMILIES OF WEAK RELATIVELY NONEXPANSIVE MAPPINGS AND A FAMILY OF EQUILIBRIUM PROBLEMS

  • Zhang, Xin;Su, Yongfu
    • Communications of the Korean Mathematical Society
    • /
    • v.25 no.4
    • /
    • pp.583-607
    • /
    • 2010
  • The purpose of this paper is to prove strong convergence theorems for common fixed points of two families of weak relatively nonexpansive mappings and a family of equilibrium problems by a new monotone hybrid method in Banach spaces. Because the hybrid method presented in this paper is monotone, so that the method of the proof is different from the original one. We shall give an example which is weak relatively nonexpansive mapping but not relatively nonexpansive mapping in Banach space $l^2$. Our results improve and extend the corresponding results announced in [W. Takahashi and K. Zembayashi, Strong convergence theorem by a new hybrid method for equilibrium problems and relatively nonexpansive mappings, Fixed Point Theory Appl. (2008), Article ID 528476, 11 pages; doi:10.1155/2008/528476] and [Y. Su, Z. Wang, and H. Xu, Strong convergence theorems for a common fixed point of two hemi-relatively nonexpansive mappings, Nonlinear Anal. 71 (2009), no. 11, 5616?5628] and some other papers.

WEAK CONVERGENCE THEOREMS FOR GENERALIZED MIXED EQUILIBRIUM PROBLEMS, MONOTONE MAPPINGS AND PSEUDOCONTRACTIVE MAPPINGS

  • JUNG, JONG SOO
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.6
    • /
    • pp.1179-1194
    • /
    • 2015
  • In this paper, we introduce a new iterative algorithm for finding a common element of the set of solutions of a generalized mixed equilibrium problem related to a continuous monotone mapping, the set of solutions of a variational inequality problem for a continuous monotone mapping, and the set of fixed points of a continuous pseudocontractive mapping in Hilbert spaces. Weak convergence for the proposed iterative algorithm is proved. Our results improve and extend some recent results in the literature.

A Coupled Fixed Point Theorem for Mixed Monotone Mappings on Partial Ordered G-Metric Spaces

  • Lee, Hosoo
    • Kyungpook Mathematical Journal
    • /
    • v.54 no.3
    • /
    • pp.485-500
    • /
    • 2014
  • In this paper, we establish coupled fixed point theorems for mixed monotone mappings satisfying nonlinear contraction involving a pair of altering distance functions in ordered G-metric spaces. Via presented theorems we extend and generalize the results of Harjani et al. [J. Harjani, B. L$\acute{o}$pez and K. Sadarangani, Fixed point theorems for mixed monotone operators and applications to integral equations, Nonlinear Anal. 74 (2011) 1749-1760] and Choudhury and Maity [B.S. Choudhury and P. Maity, Coupled fixed point results in generalized metric spaces. Math. Comput. Model. 54 (2011), 73-79].

SOLUTIONS OF SYSTEMS OF VARIATIONAL INEQUALITIES ON FIXED POINTS OF NONEXPANSIVE MAPPINGS

  • Piri, Hossein
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.3
    • /
    • pp.621-640
    • /
    • 2014
  • In this paper, we introduce a new approximating method for finding the common element of the set of fixed points of nonexpansive mappings and the set of solution of system variational inequalities for finite family of inverse strongly monotone mappings and strictly pseudo-contractive of Browder-Petryshyn type mappings. We show that the sequence converges strongly to a common element the above two sets under some parameter controling conditions. Our results improve and extend the results announced by many others.

NOTE FOR THE TRIPLED AND QUADRUPLE FIXED POINTS OF THE MIXED MONOTONE MAPPINGS

  • Wu, Jun;Liu, Yicheng
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.3
    • /
    • pp.993-1005
    • /
    • 2013
  • In this paper, to include more generalized cases, the authors present a modified concept for the tripled and quadruple fixed point of the mixed monotone mappings. Also, they investigate the existence and uniqueness of fixed point of the ordered monotone operator with the Matkowski contractive conditions in the partial ordered metric spaces. As the direct consequences, the existence of coupled fixed point, tripled fixed point and quadruple fixed point are explored at the common framework and some previous results in [T. G. Bhaskar and V. Lakshmikan-tham, Fixed point theory in partially ordered metric spaces and applications, Nonlinear Anal. 65 (2006), 1379-1393; V. Berinde and M. Borcut, Tripled fixed point theorems for contractive type mappings in partially ordered metric spaces, Nonlinear Anal. 74 (2011), no. 15, 4889-4897; E. Karapinar and N. V. Luong, Quadruple fixed point theorems for nonlinear contractions, Computers and Mathematics with Applications (2012), doi:10.1016/j.camwa.2012.02061] are improved. Finally, some fixed point theorems are proved.

APPROXIMATION METHODS FOR A COMMON MINIMUM-NORM POINT OF A SOLUTION OF VARIATIONAL INEQUALITY AND FIXED POINT PROBLEMS IN BANACH SPACES

  • Shahzad, N.;Zegeye, H.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.3
    • /
    • pp.773-788
    • /
    • 2014
  • We introduce an iterative process which converges strongly to a common minimum-norm point of solutions of variational inequality problem for a monotone mapping and fixed points of a finite family of relatively nonexpansive mappings in Banach spaces. Our theorems improve most of the results that have been proved for this important class of nonlinear operators.