• Title/Summary/Keyword: A wave velocity

Search Result 2,013, Processing Time 0.036 seconds

A Study on Effects of Temperature for Physical Properties Change of rocks (암석의 물리적 특성 변화에 대한 온도의 영향)

  • Kim, Jae-Hwan;Lee, Myeong-Seong;Lee, Mi-Hye;Lee, Jae-Man;Park, Sung-Mi
    • The Journal of the Petrological Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.141-149
    • /
    • 2011
  • Samples (two granites, marble, sandstone) were heated in an electric furnace at temperature $400^{\circ}C$ and $600^{\circ}C$ in order to investigate the change of physical properties of rocks depending on the heating temperature. Changes of Color and physical properties such as specify gravity, porosity, absorption, p-wave velocity are visible while mineralogical changes by using polarizing microscope are not pronounced. In addition, porosity and absorption increased while specific gravity and p-wave velocity decreased at a more higher temperature ($600^{\circ}C$). Although the open porosity does not indicate total porosity of the rock. but p-wave velocity can be used to evaluate the degree of damage Therefore, porosity and p-wave velocity should be compared in order to investigate the change of physical properties of rocks depending on the heating temperature.

The Comparison of Flow Simulation Results around a KLNG Model Ship (KLNG선 모형 주위의 유동계산 비교)

  • Kim, Byoung-Nam;Kim, Wu-Joan;Kim, Kwang-Soo;Park, Il-Ryong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.3
    • /
    • pp.219-231
    • /
    • 2009
  • Numerical simulations have been carried out for a 138K LNG Carrier (KLNG) model ship with free surface, using WAVIS 2.0 and Fluent 6.3.26 with various $y^+$ values and different grid densities. Level-set method for free surface capturing was adopted in WAVIS, while VOF has been used in Fluent. The calculated results were compared with the experiment data. Resistance coefficient, wave pattern, wave profile along the hull surface, axial velocity contours and transverse vectors had been analyzed. When the first $y^+$ value was fixed at 60, the simulation results from both WAVIS and Fluent were improved as the number of grids increased. The convergence time of WAVIS was much shorter than that of Fluent. Furthermore, WAVIS predicted the velocity field and the wave profile along the hull surface better than Fluent. However, Fluent gave better wave patterns.

S-wave Velocity Structure Beneath the KS31 Seismic Station in Wonju, Korea Using the Joint Inversion of Receiver Functions and Surface-wave Dispersion Curves and the H-κ Stacking Method (수신함수와 표면파 분산곡선의 복합역산 및 수신함수 H-κ 중첩법을 이용한 원주 KS31 지진관측소 하부의 S파 지각 속도구조)

  • Jeon, Tae-Hyeon;Kim, Ki-Young;Park, Yong-Cheol;Kang, Ik-Bum
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.1
    • /
    • pp.8-15
    • /
    • 2012
  • To estimate the S-wave velocity structure beneath the KS31 broad-band station in Wonju, Korea, we used $H-{\kappa}$ stacking and joint inversion of receiver functions and surface-wave dispersion curves derived from 297 teleseismic events (Mw > 5.5) recorded during the period between 2002 and 2009. We thereby determined that the average depth to a nearly flat Moho is $32.4{\pm}0.5\;km$ within tens of kilometer radius of the seismic station. For the crust at this location, we estimate an average shear-wave velocity of 3.69 km/s and a ratio of P- to S-wave velocities, $V_p/V_s$, of $1.72{\pm}0.04$, as is typical for continental crust. A negative phase in the receiver functions at 1 s indicates the presence of a shearwave low velocity layer in a depth interval of 10 to 18 km in the upper crust beneath the KS31 station.

Estimating Soil Thickness in a Debris Flow using Elastic Wave Velocity (탄성파 속도를 활용한 토석류 위험지역의 표토층 두께 결정)

  • Min, Dae-Hong;Park, Chung-Hwa;Lee, Jong-Sub;Yoon, Hyung-Koo
    • The Journal of Engineering Geology
    • /
    • v.26 no.1
    • /
    • pp.143-152
    • /
    • 2016
  • To estimate the stability of a debris flow it is necessary to know the mass of surface soil, cohesion, slope, and friction angle. Given that the mass of surface soil is a function of soil thickness and mass density, it is important to obtain reliable estimates of soil thickness across a wide area. The objective of this paper is to estimate soil thickness using the elastic wave velocity with a new standard velocity. Tests are performed in debris-flow hazard areas, after which four profiles are selected to obtain the elastic wave velocity. Dynamic cone penetration tests are carried out to find the soil thickness at 18 points. The elastic wave velocity shows the area consists of 3~4 layers, and soil thicknesses are predicted by utilizing the new standard. The elastic wave velocity and dynamic cone penetration tests yield large differences in soil thickness. Therefore, this study shows that the new standard is useful not only in estimating soil thickness but also in improving the reliability of estimates of soil thickness.

The Effects of Plasma Homocysteine Concentration on Upper Arm-Ankle Pulse Wave Velocity (혈장 호모시스테인 농도가 상완-발목 맥파 속도에 미치는 영향)

  • Kang, Ji-Hun;Shin, Sang-Yol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.673-680
    • /
    • 2019
  • This study was conducted to investigate the effects of plasma homocysteine concentration on the brachial-ankle pulse wave velocity between the normal homocysteine group and the asymptomatic high homocysteine group. 435 subjects who visited the general health examination center from April 1 to October 31, 2016, as well as to compare the direct correlation of the brachial-ankle pulse wave velocity, which indirectly reflects the homocysteine test and arterial stiffness, as a predictor of future cardiovascular outcome. As a result of the study, age, waist circumference, BUN, and plasma creatinine were significantly higher, and HDL was significantly lower in the high homocysteine group (> $15{\mu}mol/L$) than in the normal homocysteine group (< $15{\mu}mol/L$) (p=0.05). In addition, homocysteinemia was associated with smoking and drinking (p<0.001) and was significantly higher in males (p<0.001). The right and left brachial-to-ankle pulse wave velocities were significantly higher in the high homocysteine group (right p<0.001, left p=0.003) before calibrating the relevant variables. There was no significant difference between right and left brachial-to-ankle pulse wave velocities after calibrating the relevant variables. Therefore, further studies on the independent association of lowering homocysteine concentration and prevention of cardiovascular disease and the relationship between homocysteine and renal function are needed.

Resolving a velocity inversion at the geotechnical scale using the microtremor (passive seismic) survey method

  • Roberts James C.;Asten Michael W.
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.1
    • /
    • pp.14-18
    • /
    • 2004
  • High levels of ambient noise and safety factors often limit the use of 'active-source' seismic methods for geotechnical investigations in urban environments. As an alternative, shear-wave velocity-depth profiles can be obtained by treating the background microtremor wave field as a stochastic process, rather than adopting the traditional approach of calculating velocity based on ray path geometry from a known source. A recent field test in Melbourne demonstrates the ability of the microtremor method, using only Rayleigh waves, to resolve a velocity inversion resulting from the presence of a hard, 12 m thick basalt flow overlying 25 m of softer alluvial sediments and weathered mudstone. Normally the presence of the weaker underlying sediments would lead to an ambiguous or incorrect interpretation with conventional seismic refraction methods. However, this layer of sediments is resolved by the microtremor method, and its inclusion is required in one-dimensional layered-earth modelling in order to reproduce the Rayleigh-wave coherency spectra computed from observed seismic noise records. Nearby borehole data provided both a guide for interpretation and a confirmation of the usefulness of the passive Rayleigh-wave microtremor method. Sensitivity analyses of resolvable modelling parameters demonstrate that estimates of shear velocities and layer thicknesses are accurate to within approximately $10\%\;to\;20\%$ using the spatial autocorrelation (SPAC) technique. Improved accuracy can be obtained by constraining shear velocities and/or layer thicknesses using independent site knowledge. Although there exists potential for ambiguity due to velocity-thickness equivalence, the microtremor method has significant potential as a site investigation tool in situations where the use of traditional seismic methods is limited.

OCEAN WAVE IMAGING MECHANISMS BY AIRBORNE SAR: Pi-SAR X-BAND (Pi-SAR X-BAND 영상에 의한 파랑 이미징 메커니즘 연구)

  • Yang, Chan-Su
    • Proceedings of the KSRS Conference
    • /
    • 2008.03a
    • /
    • pp.176-179
    • /
    • 2008
  • In the present article, wave imaging mechanisms were investigated using airborne Pi-SAR (Polarimetric-Interferometric SAR) X-band VV images of ocean waves around the Miyake Island at approximately 180 km south from Tokyo, Japan. Two images of a same scene were produced at approximately 20 min. interval from two directions at right angles. One image shows dominant range travelling waves, but the other image shows a different wave pattern. This difference can be caused by the different image modulations of RCS and velocity bunching. In this study, 18 subimages are extracted, and the directional wave spectra are compared to each other of the two different areas.

  • PDF

SH-wave in a piezomagnetic layer overlying an initially stressed orthotropic half-space

  • Kakar, Rajneesh;Kakar, Shikha
    • Smart Structures and Systems
    • /
    • v.17 no.2
    • /
    • pp.327-345
    • /
    • 2016
  • The existence of SH-wave in a piezomagnetic layer overlying an initially stressed orthotropic half-space is investigated. The coupled of differential equations are solved for piezomagnetic layer overlying an orthotropic elastic half-space. The general dispersion equation has been derived for both magnetically open circuit and magnetically closed circuits under the four types of boundary conditions. In the absence of the piezomagnetic properties, initial stress and orthotropic properties of the medium, the dispersion equations reduce to classical Love equation. The SH-wave velocity has been calculated numerically for both magnetically open circuit and closed circuits. The effect of initial stress and magnetic permeability are illustrated by graphs in both the cases. The velocity of SH-wave decreases with the increment of wave number.

Design of A-GBSR Protocol Using Beacon Message in 802.11p WAVE (802.11p WAVE에서 비콘메시지를 이용한 A-GBSR 프로토콜 설계)

  • Jeong, Seon-Mi;Kim, Hyun-Ju;Kim, Chang-Geun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.7
    • /
    • pp.1554-1560
    • /
    • 2015
  • 802.11p WAVE is the next-generation wireless communication that can make Ad-hoc network communication possible for Vehicle-to-Vehicle. GBSR protocol, one of the 802.11p WAVE protocols, mainly focuses on improvements in networks that have a tendency to disconnect. However, it does not consider the transmission time and velocity of a packet thus, there is a disadvantage of there being a delay in the transmission velocity, in urgent situations like car accidents, emergency patients transportation and crimes. In this paper, we proposed A-GBSR protocol for transmission of a packet to mobile node which has a high speed through the improved beacon message and Adaptive Neighbor list Management that are considering of the GBSR protocol transmission velocity.

Three-dimensional S-wave Velocity Structure and Radial Anisotropy of Crust and Uppermost Mantle Beneath East Asia (동아시아 지각과 최상부맨틀의 3차원 S파 속도구조 및 이방성 연구)

  • Lim, DoYoon;Chang, Sung-Joon
    • Geophysics and Geophysical Exploration
    • /
    • v.21 no.1
    • /
    • pp.33-40
    • /
    • 2018
  • We investigate the crustal and uppermost mantle SV- and SH-wave velocity structure and radial anisotropy beneath East Asia including Korea, China and Japan. Rayleigh waves and Love waves were extracted from the seismic data recorded at broadband seismic stations in East Asia. Using the MFT (Multiple Filter Technique), we obtained group velocity dispersion curves of Rayleigh and Love waves with a period range of 3 to 200 s. We obtained 62466 Rayleigh-waves dispersion-curve measurements in vertical components and 54141 Love-waves dispersion-curve measurements in transverse components, respectively. The inverted models using these data sets provide SV- and SH-wave velocity structure of crust and uppermost mantle down to 100 km depth. In both cases of the S-wave velocity structures, strong high-velocity anomalies are observed down to 30 km depth beneath the East Sea, and deeper than 30 km depth, strong low-velocity anomalies are found beneath the Tibetan plateau. In the case of the SH-wave velocity structure, strong low-velocity anomalies are observed beneath the East Sea deeper than 30 km depth, leading to negative anisotropy. On the other hand, positive anisotropy is usually observed beneath the Tibetan plateau.