DOI QR코드

DOI QR Code

S-wave Velocity Structure Beneath the KS31 Seismic Station in Wonju, Korea Using the Joint Inversion of Receiver Functions and Surface-wave Dispersion Curves and the H-κ Stacking Method

수신함수와 표면파 분산곡선의 복합역산 및 수신함수 H-κ 중첩법을 이용한 원주 KS31 지진관측소 하부의 S파 지각 속도구조

  • 전태현 (한국지질자원연구원 국토지질연구본부) ;
  • 김기영 (강원대학교 지구물리학과) ;
  • 박용철 (극지연구소 극지지구시스템연구부) ;
  • 강익범 (한국지질자원연구원 국토지질연구본부)
  • Received : 2012.01.03
  • Accepted : 2012.02.10
  • Published : 2012.02.29

Abstract

To estimate the S-wave velocity structure beneath the KS31 broad-band station in Wonju, Korea, we used $H-{\kappa}$ stacking and joint inversion of receiver functions and surface-wave dispersion curves derived from 297 teleseismic events (Mw > 5.5) recorded during the period between 2002 and 2009. We thereby determined that the average depth to a nearly flat Moho is $32.4{\pm}0.5\;km$ within tens of kilometer radius of the seismic station. For the crust at this location, we estimate an average shear-wave velocity of 3.69 km/s and a ratio of P- to S-wave velocities, $V_p/V_s$, of $1.72{\pm}0.04$, as is typical for continental crust. A negative phase in the receiver functions at 1 s indicates the presence of a shearwave low velocity layer in a depth interval of 10 to 18 km in the upper crust beneath the KS31 station.

원주 KS31 광대역 지진관측소 하부의 S파 속도구조를 구명하기 위해서, 2002 ~ 2009년 사이에 기록된 규모 Mw 5.5 이상의 297개 원거리 지진 이벤트 자료로부터 구한 수신함수와 표면파 분산곡선의 복합역산 및 $H-{\kappa}$ 영역에서의 중합법을 적용하였다. 분석 결과는 이 관측소 반경 수십 km 이내의 모호면 평균 깊이가 $32.4{\pm}0.5\;km$로 거의 평탄하게 놓여 있음을 지시한다. 이 지역 지각의 평균 S파 속도는 3.69 km/s이고, P파와 S파 속도비, $V_p/V_s$$1.72{\pm}0.04$로 나타나서 전형적인 육지지각의 특성을 보인다. 수신함수 1 s에 나타난 음 위상은 KS31 관측소 하부의 상부지각 10 ~ 18 km 깊이에 S파 저속도층이 존재함을 지시한다.

Keywords

References

  1. 김기영, 이정모, 박창업, 정희옥, 홍명호, 김준영, 2010, 초동주시역산을 통한 KCRT-2008 측선 하부의 지진파 속도구조, 지구물리와 물리탐사, 13, 153-158.
  2. 김소구, 이승규, 2001, 수신함수를 이용한 남한의 광대역 관측망 하부의 Moho 불연속면 연구, 한국도시방재학회지, 1, 139- 155.
  3. 김소구, 이승규, 2004, 수신함수에 의한 한국 지진관측소(인천, 원주, 포항) 하부의 지각구조 연구, 한국방재학회지, 4, 43-54.
  4. 박윤경, 전정수, 김성균, 2003, 수신함수를 이용한 관측소 하부의 지진파 속도구조, 한국지진공학회지, 9, 3-7.
  5. 유현재, 이기화, 2004, 수신함수와 표면파 속도분산의 동시역산을 이용한 경상분지 지역의 지각과 상부 맨틀 구조의 연구, 대한지구물리학회 한국물리탐사학회 공동학술대회논문집, 238-246.
  6. 이기화, 2010, 한반도의 지진활동과 지각구조, 지구물리와 물리 탐사, 13, 256-267.
  7. Agostinetti, N. P. and Amato, A., 2009, Moho depth and Vp/Vs ratio in peninsular Italy from teleseismic receiver functions, Journal of Geophysical Research, 114, B06303. https://doi.org/10.1029/2008JB005899
  8. Ammon, C., 1991, The isolation of receiver effects from teleseismic P waveforms, Bulletin of the Seismological Society of America, 81, 2504-2510.
  9. Ammon, C. J., Randall, G. E., and Zandt, G., 1990, On the Nonuniqueness of Receiver Function Inversions, Journal of Geophysical Research, 95, 15303-15318. https://doi.org/10.1029/JB095iB10p15303
  10. Ammon, C. J., 1992, A comparison of deconvoulution techniques, Technical Representative, Lawrence Livermore National laboratory.
  11. Burdick, L. J. and Langston, C. A., 1977, Modeling cruststructure through the use of converted phases in teleseismic body-waveforms, Bulletin of the Seismological Society of America, 67, 677-691.
  12. Chang, S. J., Baag, C. E., and Langston, C. A., 2004, Joint analysis of teleseismic receiver function and surface wave dispersion using the genetic algorithm, Bulletin of the Seismological Society of America, 94, 691-704. https://doi.org/10.1785/0120030110
  13. Chang, S. J. and Baag, C. E., 2007, Moho depth and crustal VP/ VS variation in Southern Korea from teleseimic receiver functions, Bulletin of the Seismological Society of America, 97, 1621-1631. https://doi.org/10.1785/0120050264
  14. Chmielowski, J., Zandt, G., and Haberland, C., 1999, The central Andean, Altiplano-Puna magma body, Geophysical Research Letters, 26, 783-786. https://doi.org/10.1029/1999GL900078
  15. Cho, K. H., Herrmann, R. B., and Lee, K., 2007, Imaging the upper crust of the Korean Peninsula by surface-wave Tomography, Bulletin of the Seismological Society of America, 97, 198-207. https://doi.org/10.1785/0120060096
  16. Clayton, R. W. and Wiggins, R. A., 1976, Source shape estimation and deconvolution of teleseismic body waves, Geophysical Journal Royal Astronomical Society, 47, 151-177. https://doi.org/10.1111/j.1365-246X.1976.tb01267.x
  17. Gurrola, H., Minster, J. B., Given, H., Vernon, F., Berger, J., and Aster, R., 1990, Analysis of high-frequency seismic noise in the western united-states and eastern kazakhstan, Bulletin of the Seismological Society of America, 80, 951-970.
  18. Julia, J., Ammon, C. J., Herrmann, R. B., and Correig, A. M., 2000, Joint inversion of receiver function and surface wave dispersion observations, Geophysical Journal International, 143, 99-112. https://doi.org/10.1046/j.1365-246x.2000.00217.x
  19. Julia, J. and Mejia, J., 2004, Thickness and Vp-Vs ratio variation in the Iberian crust, Geophysical Journal International, 156, 59-72. https://doi.org/10.1111/j.1365-246X.2004.02127.x
  20. Kikuchi, M. and Kanamori, H., 1982, Inversion of complex body waves, Bulletin of the Seismological Society of America, 72, 491-506.
  21. Kim, K. Y., Lee, J. M., Moon, W., Baag, C. E., Jung, H., and Hong, M. H., 2006, Crustal structure of the Southern Korean Peninsula from seismic waves generated by large explosions in 2002 and 2004, Pure appl. geophys. 164, 1-17.
  22. Kosarian, M., 2006, Lithospheric structure of North Africa and Western Eurasia, Ph.D thesis, The Pennsylvania State University.
  23. Langston, C. A., 1979, Structure under Mount Rainier, Washington, inferred from teleseismic body waves, Journal of Geophysical Research, 84, B9.
  24. Ligorria, J. P. and Ammon C. J., 1999, Iterative deconvolution and receiver-function estimation, Bulletin of the Seismological Society of America, 89, 1395-1400.
  25. Lowrie, W., 1997, Fundamentals of Geophysics, Cambridge University Press, Cambridge.
  26. McMechan, G. A. and Yedlin, M. J. 1981, Analysis of dispersive waves by wave field transformation, Geophysics, 46, 869- 874. https://doi.org/10.1190/1.1441225
  27. Mohsen, A., 2004, A receiver function study of the crust and upper mantle across the Dead Sea transform, Doctoral thesis, The Free University of Berlin.
  28. Owens, T. J., Zandt, G., and Taylor, S. R., 1984, Seismic Evidence for an ancient rift beneath the Cumberland plateau, Tennessee, Journal of Geophysical Research, 89, 7783-7795. https://doi.org/10.1029/JB089iB09p07783
  29. Phinney, R. A., 1964, Structure of the Earth's crust from spectral behaviour of long period body waves, Journal of Geophysical Research, 69, 2997-3107. https://doi.org/10.1029/JZ069i014p02997
  30. Vinnik, L. P. and Kosarev, G. L., 1981, Determination of crustal parameters from observations of teleseismic body waves, Proceedings Academy of Sciences of the USSR, 261, 1091- 1095.
  31. Yoo, H. J., Herrmann, R. B., Cho, K. H., and Lee, K., 2007, Imaging the three-dimensional crust of the Korean Peninsula by joint inversion of surface-wave dispersion and teleseismic receiver functions, Bulletin of the Seismological Society of America, 97, 1002-1011. https://doi.org/10.1785/0120060134
  32. Zandt, G. and Ammon, C. J., 1995, Continental crust composition constrained by measurements of crustal Poisson's ratio, Letters to Nature. 152-154.
  33. Zhu, L. and Kanamori, H., 2000, Moho depth variation in southern California from teleseismic receiver functions, Journal of Geophysical Research, 105, 2969-2980. https://doi.org/10.1029/1999JB900322

Cited by

  1. Shear Wave Velocity Structure Beneath White Island Volcano, New Zealand, from Receiver Function Inversion and H-κ Stacking Methods vol.17, pp.2, 2014, https://doi.org/10.7582/GGE.2014.17.2.066
  2. S-Wave Velocities Beneath Jeju Island, Korea, Using Inversion of Receiver Functions and the H-κ Stacking Method vol.16, pp.1, 2013, https://doi.org/10.7582/GGE.2013.16.1.18