DOI QR코드

DOI QR Code

Three-dimensional S-wave Velocity Structure and Radial Anisotropy of Crust and Uppermost Mantle Beneath East Asia

동아시아 지각과 최상부맨틀의 3차원 S파 속도구조 및 이방성 연구

  • Lim, DoYoon (Division of Geology and Geophysics, Kangwon National University) ;
  • Chang, Sung-Joon (Division of Geology and Geophysics, Kangwon National University)
  • 임도윤 (강원대학교 지질.지구물리학부) ;
  • 장성준 (강원대학교 지질.지구물리학부)
  • Received : 2017.12.26
  • Accepted : 2018.02.23
  • Published : 2018.02.28

Abstract

We investigate the crustal and uppermost mantle SV- and SH-wave velocity structure and radial anisotropy beneath East Asia including Korea, China and Japan. Rayleigh waves and Love waves were extracted from the seismic data recorded at broadband seismic stations in East Asia. Using the MFT (Multiple Filter Technique), we obtained group velocity dispersion curves of Rayleigh and Love waves with a period range of 3 to 200 s. We obtained 62466 Rayleigh-waves dispersion-curve measurements in vertical components and 54141 Love-waves dispersion-curve measurements in transverse components, respectively. The inverted models using these data sets provide SV- and SH-wave velocity structure of crust and uppermost mantle down to 100 km depth. In both cases of the S-wave velocity structures, strong high-velocity anomalies are observed down to 30 km depth beneath the East Sea, and deeper than 30 km depth, strong low-velocity anomalies are found beneath the Tibetan plateau. In the case of the SH-wave velocity structure, strong low-velocity anomalies are observed beneath the East Sea deeper than 30 km depth, leading to negative anisotropy. On the other hand, positive anisotropy is usually observed beneath the Tibetan plateau.

이 연구는 한국, 중국, 일본을 포함하는 동아시아 지역의 지각과 최상부맨틀의 SV파 및 SH파 속도구조와 지진파의 속도 방사 이방성(radial anisotropy)을 알아보기 위해 수행하였다. IRIS (Incorporate Research Institutions for Seismology)에서 동아시아에 설치한 광대역 지진관측소에 기록된 지진자료를 사용하여 레일리파와 러브파를 추출하였으며, MFT (Multiple Filter Technique)을 사용하여 각 성분에 기록된 주기 3 ~ 200초 범위의 레일리파와 러브파의 군속도 분산자료를 획득하였다. 수직성분에서 62466개의 레일리파의 분산곡선 측정값을, 접선(transverse)성분에서 54141개의 러브파의 분산곡선 측정값을 얻을 수 있었다. 얻어진 분산자료를 역산하여 속도모델을 구하였고, 역산된 모델을 통해 깊이 100 km 까지의 SV파 및 SH파 속도 구조를 구하였다. SV파와 SH파 속도구조의 경우, 동일하게 깊이 30 km 까지 동해에서 강한 고속도 이상이 나타나며, 30 km 이상의 깊이에서는 중국 남서쪽의 티벳 고원에서 강한 저속도 이상이 나타난다. SH파 속도구조의 경우, 30 km 이상의 깊이에서 동해에서 상대적으로 더 강한 저속도 이상이 나타난다. 그 결과, 지진파 이방성은 평균적으로 동해지역에서 음의 이방성을, 중국 내륙지역에서 양의 이방성이 관측된다.

Keywords

References

  1. Aki, K., and Richard, P. G., 1980, Quantitative Seismology Theory and Methods, Freeman, 641-718.
  2. Bai, D., Unsworth, M. J., Meju, M. A., Ma, X., Teng, J., Kong, X., and Zhao, C., 2010, Crustal deformation of the eastern Tibetan plateau revealed by magnetotelluric imaging, Nature Geoscience, 3, 358-362. https://doi.org/10.1038/ngeo830
  3. Bath, M., 1974, Spectral Analysis in Geophysics, Elsevier.
  4. Chen, Y., Badal, J., and Zhang, Z., 2009, Radial anisotropy in the crust and upper mantle beneath the Qinghai-Tibet Plateau and surrounding regions, Journal of Asian Earth Sciences, 36, 289-302. https://doi.org/10.1016/j.jseaes.2009.06.011
  5. Chen, Y., Niu, F., Liu, R., Huang, Z., Tkalcic, H., Sun, L., and Chan, W., 2010, Crustal structure beneath China from receiver function analysis, J. Geophys. Res. Solid Earth, 115, B03307.
  6. Dziewonski, A., Bloch, S., and Landisman, M., 1969, A technique for the analysis of transient seismic signals, Bull. Seismol. Soc. Amer., 59, 427-444.
  7. Estey, L. H., and Douglas, B. J., 1986, Upper mantle anisotropy: A preliminary model, J. Geophys. Res., 91, 11393-11406. https://doi.org/10.1029/JB091iB11p11393
  8. Feng, M., and An, M., 2010, Lithospheric structure of the Chinese mainland determined from joint inversion of regional and teleseismic Rayleigh-wave group velocities, J. Geophys. Res. Solid Earth, 115, B06317.
  9. He, Z. Q., Ding, Z. F., Ye, T. L., Sun, W. G., and Zhang, N. L., 2001, Surface wave tomography of the crust and upper mantle of Chinese mainland and its neighboring region, Acta Seismol. Sin., 14, 634-641. https://doi.org/10.1007/BF02718074
  10. He, Z. Q., Ding, Z. F., Ye, T. L., Sun, W. G., and Zhang, N. L., 2002, Group velocity distribution of Rayleigh waves and crustal and upper mantle velocity structure of the Chinese mainland and its vicinity, Acta Seismol. Sin., 15, 269-275. https://doi.org/10.1007/s11589-002-0059-1
  11. Hirn, A., Jiang, M., Sapin, M., Diaz, J., Nercessian, A., Lu, Q. T., and Ma, K., 1995, Seismic anisotropy as an indicator of mantle flow beneath the Himalayas and Tibet, Nature, 375, 571-574. https://doi.org/10.1038/375571a0
  12. Karato, S., Jung, H., Katayama, I., and Skemer, P., 2008, Geodynamic significance of seismic anisotropy of the upper mantle: new insights from laboratory studies, Annu. Rev. Earth Planet. Sci., 36, 59-95. https://doi.org/10.1146/annurev.earth.36.031207.124120
  13. Lee, S.-J., J. Rhie, S. Kim, T. S. Kang, and G. B. Kim, 2015, Ambient seismic noise tomography of the southern East Sea (Japan Sea) and the Korea Strait, Geosci. J., 19, 709-720. https://doi.org/10.1007/s12303-015-0012-7
  14. Li, C., Zhang, G., Wang, X., Wang, Z., and Fang, J., 2014, Three-dimensional lithospheric density distribution of China and surrounding regions, Geoscience Frontiers, 5, 95-102. https://doi.org/10.1016/j.gsf.2013.03.004
  15. Li, Y., Wu, Q., Pan, J., Zhang, F., and Yu, D., 2013, An uppermantle S-wave velocity model for East Asia from Rayleigh wave tomography. Earth Planet. Sci. Lett., 377, 367-377.
  16. Min, K. M., and Chang, S.-J., 2017, 3D SH-wave velocity structure and radial anisotropy of East Asia using surface wave tomography, Geophys. and Geophys. Explor., 20, 25-32 (in Korean with English abstract). https://doi.org/10.7582/GGE.2017.20.1.025
  17. Nelson, K. D., Zhao, W., Brown, L. D., Kuo, J., Che, J., Liu, X., and Kind, R., 1996, Partially molten middle crust beneath southern Tibet: synthesis of project INDEPTH results. Science, 274, 1684-1688. https://doi.org/10.1126/science.274.5293.1684
  18. Obrebski, M., Allen, R. M., Zhang, F., Pan, J., Wu, Q., and Hung, S. H., 2012, Shear wave tomography of China using joint inversion of body and surface wave constraints, J. Geophys. Res. Solid Earth, 117, B01311.
  19. Pan, Y., and Shen, W. B., 2017, Contemporary crustal movement of southeastern Tibet: Constraints from dense GPS measurements, Scientific Reports, 7, 45348. https://doi.org/10.1038/srep45348
  20. Shen, W., M. H. Ritzwoller, D. Kang, Y. H. Kim, F.-C. Lin, J. Ning, W. Wang, Y. Zheng, and L. Zhou, 2016, A seismic reference model for the crust and uppermost mantle beneath China from surface wave dispersion, Geophys. J. Int., 206, 954-979. https://doi.org/10.1093/gji/ggw175
  21. Sun, X., Song, X., Zheng, S., Yang, Y., and Ritzwoller, M. H., 2010, Three dimensional shear wave velocity structure of the crust and upper mantle beneath China from ambient noise surface wave tomography, Earthquake Science, 23, 449-463. https://doi.org/10.1007/s11589-010-0744-4
  22. Wei, W., Unsworth, M., Jones, A., Booker, J., Tan, H., Nelson, D., and Jin, S., 2001, Detection of widespread fluids in the Tibetan crust by magnetotelluric studies, Science, 292, 716-719. https://doi.org/10.1126/science.1010580
  23. Witek, M., S. van der Lee, and T. S. Kang, 2014, Rayleigh wave group velocity distributions for East Asia using ambient seismic noise, Geophys. Res. Lett., 41, 8045-8052. https://doi.org/10.1002/2014GL062016
  24. You, S. H., and Chang, S.-J., 2017, 3D SV-wave velocity structure of East Asia using surface wave tomography, Geophys. and Geophys. Explor., 20, 12-17 (in Korean with English abstract). https://doi.org/10.7582/GGE.2017.20.1.012
  25. Zhang, Z., Deng, Y., Teng, J., Wang, C., Gao, R., Chen, Y., and Fan, W., 2011, An overview of the crustal structure of the Tibetan plateau after 35 years of deep seismic soundings, Journal of Asian Earth Sciences, 40, 977-989. https://doi.org/10.1016/j.jseaes.2010.03.010