DOI QR코드

DOI QR Code

S-wave Relative Travel Time Tomography for Northeast China

중국 만주지역 S파 상대주시 토모그래피

  • Kim, Yong-Woo (Division of Geology and Geophysics, Kangwon National University) ;
  • Kim, Hyo-Ji (Division of Geology and Geophysics, Kangwon National University) ;
  • Lim, Jung-A (Division of Geology and Geophysics, Kangwon National University) ;
  • Chang, Sung-Joon (Division of Geology and Geophysics, Kangwon National University)
  • 김용우 (강원대학교 지질.지구물리학부) ;
  • 김효지 (강원대학교 지질.지구물리학부) ;
  • 임정아 (강원대학교 지질.지구물리학부) ;
  • 장성준 (강원대학교 지질.지구물리학부)
  • Received : 2017.12.20
  • Accepted : 2018.02.27
  • Published : 2018.02.28

Abstract

The Northeast China is an important site geologically and geophysically because of a huge volcano called Mt. Baekdu, which is one of the largest volcanoes in the world. Signs of eruption have been recently observed and people are keen to its behavior. We carried out relative travel time tomography to investigate the velocity structure between 100 ~ 600 km depth beneath Northeast China. We used teleseismic data during 2009 ~ 2011 recorded in NecessArray provided by IRIS (Incorporated Research Institute for Seismology). The relative observations were obtained by using the multi-channel cross-correlation method. Based on the tomographic results, we observed that the locations beneath which low-velocity zones are observed coincide with the locations of several volcanic regions in Northeast China. A low-velocity anomaly is revealed beneath Mt. Baekdu down to 600 km depth, which is thought to the main origin of the magma supply for Mt. Baekdu. Another low velocity anomaly is observed beneath east of the Datong volcano down to around 300 km depth, which is inferred to be related to an upwelling from deep mantle. We observed a low velocity anomaly beneath the Wudalianchi volcano down to around 200 km depth, which may imply that this volcano has been formed by an upwelling from the asthenosphere.

중국 만주지역은 백두산이라는 거대한 화산이 존재하는 지질학적, 지구물리학적으로 중요한 곳이다. 백두산은 전 세계에서 규모가 가장 큰 화산 중 하나이며, 최근 분화 조짐이 보이면서 사람들의 관심이 집중되어 있다. 본 연구는 중국 만주지역의 하부 깊이 약 100 ~ 600 km 사이의 속도구조를 파악하기 위해 S파 상대주시 토모그래피를 수행하였다. 연구에는 IRIS (Incorporated Research Institutions for Seismology)에서 제공하는 Necess Array (North East China Extended SeiSmic Array)에 기록된 2009 ~ 2011년 기간 동안 진앙거리 $30^{\circ}$ 이상 $90^{\circ}$ 미만의 지진 자료를 사용하였다. 획득한 자료들에 다중채널 상호상관법(multi-channel cross-correlation method)을 적용함으로써 상대주시를 계산하였다. 그 결과 중국 만주 지역에 분포하는 화산지대와 토모그래피 이미지에서 나타나는 저속도 이상체의 위치가 동일함을 관측하였다. 백두산 하부 100 ~ 600 km 사이에 저속도 이상이 발견되었으며 이 저속도 이상체는 백두산의 마그마 공급과 연관이 있을 것으로 판단된다. 서쪽에 다통 화산지대 동쪽 하부 300 km 부근까지, 북쪽에 우달리안치 화산지대의 경우 하부 200 km 부근 까지 저속도 이상이 발견되었다. 이 저속도 이상체는 백두산의 형성과 생성원인이 다르며, 다통 화산지대 동쪽 저속도 이상의 경우 깊은 맨틀에서의 상승류에 의해 생성되었을 가능성이 있으며, 우달리안치 화산의 경우 연약권에 상승류에 의해 생성된 것으로 판단된다.

Keywords

References

  1. Chen, C., Zhao, D., and Tian, Y., 2017, Mantle trasition zone, stagnant slab and intraplate volcanism in Northeast Asia, Geophys. J. Int., 209, 65-85.
  2. Duan, Y., Zhao, D., Zhang, X., Xia, S., Liu, Z., Wang, F., and Li, L., 2009, Seismic structure and origin of active intraplate volcanoes in Northeast Asia, Tectonophysics, 470, 257-266. https://doi.org/10.1016/j.tecto.2009.01.004
  3. Fukao, Y., S. Widiyantoro, and M. Obayashi, 2001, Stagnant slabs in the upper and lower mantle trasition region, Rev. Geophys., 39, 291-323. https://doi.org/10.1029/1999RG000068
  4. Huang, J., and Zhao, D., 2006, High-resolution mantle tomography of China and surrounding regions, J. Geophys. Res., 111, B09305, doi:10.1029/2005JB004066.
  5. Kennett, B. L. N., and Engdahl, E. R., 1991, Travel times for global earthquake location and phase association, Geophys. J. Int., 105, 429-465. https://doi.org/10.1111/j.1365-246X.1991.tb06724.x
  6. Kuritani, T., Ohtani, E., and Kimura, J., 2011, Intensive hydration of the mantle transition zone beneath China caused by ancient slab stagnation, Nature Geoscience, 4, 713-716. https://doi.org/10.1038/ngeo1250
  7. Lei, J., and Zhao, D., 2005, P-wave tomography and orgin of the Changbai intraplate vocano in Northeast Asia, Tectonophysics, 397, 281-295. https://doi.org/10.1016/j.tecto.2004.12.009
  8. Lei, J., Xie, F., Mishra, O.P., Lu, Y., Zhang, G., and Li, Y., 2012, The 2011 Yingjiang, China, Earthquake: a volcano-related fluid-driven earthquake?, Bull. Seismol. Soc. Amer., 102, 417-425. https://doi.org/10.1785/0120110143
  9. Lei, J., Xie, F., Fan, Q., and Santosh, M., 2013, Seismic imaging of the deep structure under the Chinese volcanoes: and overview, Phys. Earth Planet. Inter., 224, 104-123. https://doi.org/10.1016/j.pepi.2013.08.008
  10. Li, C., and R. D. van der Hilst., 2010, Structure of the upper mantle and transition zone beneath Southeast Asia from traveltime tomograhy, J. Geophys. Res., 115, B07308, doi:10.1029/2009JB006882.
  11. Liu, J., Han, J., and Fyfe, W., 2001, Cenozoic episodic volcanism and continental rifting in northeast China and possible link to Japan Sea development as revealed from K-Ar geochronology, Tectonophysics, 339, 385-401. https://doi.org/10.1016/S0040-1951(01)00132-9
  12. Lou, X., van der Lee, S., and Lloyd, S., 2013, AIMBAT:a Python/Matplotlib tool for measuring teleseismic arrival times, Seismol. Res. Lett., 84, 85-93. https://doi.org/10.1785/0220120033
  13. Richard, G., and Iwamori, H., 2010, Stagnant slab, wet plumes and Cenozoic volcanism in East Asia, Phys. Earth Planet. Inter., 183, 280-287. https://doi.org/10.1016/j.pepi.2010.02.009
  14. Simkin, T., and Sibert, L., 1994, Volcanoes of the World,2nd Ed., Geoscience Press, 1-368.
  15. Simnute, S., Steptoe, H., Cobden, L., Gokhberg, A., and Fichtner, A., 2016, Full-waveform inversion of the Japanese Islands region, J. Geophys. Res., 121, doi:10.1002/2016JB012802.
  16. Tang, Y., and Obayashi, M., 2014, Changbaishan volcanism in northeast China linked to subduction-induced mantle, Nature Geoscience, 6, 470-475.
  17. Tian, Y., Zhu, H., Zhao, D., Liu, C., Feng, X., Liu, T., and Ma, J., 2016, Mantle transition zone structure beneath the Changbai volcano: insight into deep slab dehydration and hot upwelling near the 410 km discontinuity, J. Geophys. Res., 121, 5794-5808.
  18. VanDecar, J. C., and Crosson, R. S., 1990, Determination of teleseismic relative phase arrival times using multi-channel cross-correlation and least-squares, Bull. Seismol. Soc. Amer., 80, 150-169.
  19. Zhao, D., Lei, J., and Tang, R., 2004, Origin of the Changbai intraplate vocanism in Nprtheast China: evidence from seismic tomography, Chinese Science Bulletin, 49, 1401-1409. https://doi.org/10.1360/04wd0125
  20. Zhao, D., Maruyama, S., and Omori, S., 2007, Matle dynamics of western Pacific to East Asia: new insight from seismic tomography and mineral physics, Gondwana Research, 11, 120-131. https://doi.org/10.1016/j.gr.2006.06.006
  21. Zhao, D., Tian, Y., Lei, L., and Zheng, S., 2009, Seismic image and origin of the Changbai intraplate volcano in East Asia: role of big mantle wedge above the stagnant Pacific slab, Phys. Earth Planet. Inter., 173, 197-206. https://doi.org/10.1016/j.pepi.2008.11.009
  22. Zhao, D., and Liu, L., 2010, Deep structure and origin of active volcanoes in China, Geoscience Frontiers, 1, 31-44. https://doi.org/10.1016/j.gsf.2010.08.002
  23. Zhao, D., and Tian, You., 2013, Changbai intraplate volcanism and deep earthquakes in East Asia: a possible link?, Geophys. J. Int., 195, 706-724. https://doi.org/10.1093/gji/ggt289