• 제목/요약/키워드: A photovoltaic system

검색결과 1,623건 처리시간 0.023초

추적식 수상 태양광 발전 시스템 성능 분석 (The Efficiency Analysis of Tracking-Type Floating PV System)

  • 양연원;정선옥;신현우;이길송
    • Current Photovoltaic Research
    • /
    • 제1권2호
    • /
    • pp.122-125
    • /
    • 2013
  • The Floating Photovoltaic System was installed on the surface of water. There were some researches in this subject. But there was not many studies with experiment on a high waterproof Floating Photovoltaic modules. The aim of this study was to analyze the performance of the Floating Photovoltaic System. For this experiment, a high waterproof Floating Photovoltaic modules were designed and applied to the module capacity of 10 kW Tracking-Type structure. The experiment results indicated the performance of the daily production is 51.6 kW; the production capacity of Floating Photovoltaic System is expected to be 23% higher than that of the ground-mounted photovoltaic system.

목포대학교 기숙사 30[kW]급 태양광발전시스템 발전특성 (Operationg Characteristics of 50kW Utility Interactive Photovoltaic System)

  • 문채주;임정민;정의현;박상진;박귀열
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2008년도 추계학술발표대회 논문집
    • /
    • pp.53-56
    • /
    • 2008
  • A photovoltaic panel is a device that, through the photovoltaic effect, converts luminous energy into electric energy. Photovoltaic generation system used infinity of solar energy, cost of fuel is needless and there in no air pollution or waste occurrence. This paper summarizes the results of these efforts by offering a photovoltaic system structure in 30[kW] large scale applications installed in Mokpo National University dormitory roof. The status of photovoltaic system components, are inter-connection and safety equipment monitoring system will be summarized as this article. This describes configuration of utility interactive photovoltaic system which generated power supply for dormitory. In this paper represent 30[kW] utility photovoltaic system examination result.

  • PDF

수상태양광 발전시스템의 운영특성 및 설계요소에 관한 연구 (A Study on Operating Characteristics and Design Factors of Floating Photovoltaic Generating Facilities)

  • 김현한;김광호
    • 전기학회논문지
    • /
    • 제66권10호
    • /
    • pp.1532-1539
    • /
    • 2017
  • The floating photovoltaic system is a new concept in the renewable energy technology. That is similar to land based photovoltaic technology except floating system. So the system needs buoyant objects, mooring, ect, besides modules and supports, and that is able to withstand in water level changes and wind strength. Therefore the floating photovoltaic system is much different from land photovoltaic system. K-water (Korea Water Resources Corporation) has been operating two floating photovoltaic system that's capacity is 100 kW and 500 kW respectively since in summer 2011 for commercial generation, and have construction project for 2,000 kW in Boryeong multipurpose Dam and other areas. Furthermore K-water was developing a tracking-type floating photovoltaic system at Daecheong multipurpose Dam and developed and installed an ocean floating photovoltaic demonstration plant at Sihwa Lake in October 2013 for R&D. In this paper, we introduce that structure of floating photovoltaic system include buoyant structure, mooring system and auxiliary device. Especially the rope which is in part of mooring should be always maintain tension under any water level. Also we explain about structure design concept to wind load in an every loading condition and a kind of structure materials and PV structure types used in water environment. Especially ocean floating PV system is affected by tidal current and typhoon. So there are considering the elements in design. Finally we compare with floating and land photovoltaic on power amount. As a result of that we verified the floating photovoltaic system is more about 6.6~14.2 % efficiency than a general land photovoltaic system.

수상태양광 발전시스템 개발을 위한 적지조사에 관한 연구 (Study on Analysis of Suitable Site for Development of Floating Photovoltaic System)

  • 이성훈;이남형;최형철;김진오
    • 조명전기설비학회논문지
    • /
    • 제26권7호
    • /
    • pp.30-38
    • /
    • 2012
  • Recently, interests in renewable energy have gradually increased. Photovoltaic system of various renewable energy is the most interest in power sources. Nowadays, the market of photovoltaic system is expected to be expanded due to the introduction of RPS(Renewable Portfolio Standard). Floating photovoltaic system is a new power system using the water surface above the dam and reservoir water. Floating photovoltaic system is different from the traditional approach to the development of solar power system causing problems such as environmental degradation. This paper investigates the analysis methods of suitable site for the development of floating photovoltaic system. The A,B,C as the optimal candidates were selected in hap cheon dam. The C is the best suitable site in A,B,C considering the expected power generation. Applied methods have effectively done to develop floated photovoltaic system.

태양광어레이 최적화에 의한 단위 부지면적당 발전량 개선 (Improvement of generation capacity per unit site area by the optimization of photovoltaic array)

  • 김의환
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.109.2-109.2
    • /
    • 2011
  • A photovoltaic system is getting the spotlight for a environment-friendly energy source. But its location is limited because a lot of land is necessary for photovoltaic arrays. Nevertheless, its dissemination is rapidly increasing more than 40 % every year and exceeded about 400 MW in 2009. The radical growth of a photovoltaic system aggravated a lack of sites, so that forests and farmland were destroyed. It is demanded to make use of a vacant lot or little piece of land for the way to solve the lack of sites and improve the location requirements for a photovoltaic system. General photovoltaic arrays are consist of a single layer structure and needs enough separation distances to maximize the amount of solar radiation and to eliminate influences by the shadow of other arrays. So that a large amount of land is required for the site. The solar cell arrays with long separation distances can not be placed in a small vacant lot and its site application efficiency is low. This study optimized photovoltaic arrays as multilayered structure with movable sleeves for the efficient photovoltaic in a small site. The existing photovoltaic arrays with a single layer structure were fixed or tracking systems. In this experimental equipment, photovoltaic arrays attached to the multilayers have rectilinear movement and rotary motion using sleeves. Therefore, shadow influences were removed and the generation capacity was improved. On the simulation result, generation increased by about 30% in the same site considering shadow influences and so on.

  • PDF

A Study on Effects of Partial Shading on PV System applied to the Offshore Plant

  • Lee, Ji Young;Yang, Hyang Kweon;Oh, Jin Seok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제39권2호
    • /
    • pp.152-158
    • /
    • 2015
  • Unlike photovoltaic systems installed on land, photovoltaic systems applied to the offshore plant have the characteristic that is installed in a limited space. For single point mooring plant, it is advantageous in terms of a reliable power supply to be installed in different directions of photovoltaic panels, because it is not possible to identify the position of the sun by rotation of the plant itself. Differences of installation angle between photovoltaic panels make a difference of the intensity of radiation irradiated on each photovoltaic panel, and it brings loss of generation quantity due to the partial shading. In order to provide a photovoltaic system suitable for offshore plant, the modeling which contains multiple photovoltaic panels controlled by single controller is performed. Then, it was examined how the output characteristics of the photovoltaic system change about the difference of the intensity of radiation that varies depending on the altitude of the sun. Finally, through the simulation, a development model of the photovoltaic system which is suitable for offshore plant is suggested.

매틀랩/시뮬링크 기반 추적식 수상태양광 발전시스템의 모델링에 관한 연구 (A Study on Modeling of Tracking-Type Floating Photovoltaic System based on Matlab/Simulink)

  • 김인수;오승찬;김양모;최영관
    • 전기학회논문지
    • /
    • 제64권5호
    • /
    • pp.805-811
    • /
    • 2015
  • Floating photovoltaic systems have been developed by the construction process such as design, construction, operation and management. Therefore, the power of floating photovoltaic systems has been calculated by using simple formulas and the optimal tracking interval is set by operation experience. But, flow characteristics have a decisive effect on it unlike land based PV systems. In this paper, a tracking floating photovoltaic system is modeled by using Matlab/simulink. The modeling for the floating photovoltaic system is verified through applying the flow characteristics based on actual operating data of 100㎾ class tracking floating photovoltaic.

태양광발전시스템의 효율 향상을 위한 태양전지 모듈의 최적 설계에 관한 연구 (A Study on the Optimal PV-module Design for Efficiency Improvement of Photovoltaic System)

  • 김민;이기제;이진섭
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.328-330
    • /
    • 2001
  • The construct of photovoltaic module array, main power source of photovoltaic system, is very important to the efficiency improvement of whole photovoltaic system. Photovoltaic modules are usually connected in series or parallel to meet power capacity required. Since output characteristics of a photovoltaic module are greatly fluctuated on the variation of insolation, temperature and its type, the maximum open circuit voltage and output operating voltage of photovoltaic module array must exist in the admissible input voltage range of inverter system under any operating conditions. In this paper, we present the selection and array method of photovoltaic modules through simulation for the coupling loss reduction between photovoltaic modules and a inverter.

  • PDF

선박에서 화석연료 의존도 절감을 위한 태양광 발전 (Photovoltaic Generating System on Ships to Reduce Fossil Fuel Dependence)

  • Takeshi Katagi;Yoshimi Fujii;Eiichi Nishikawa;Takeshi Hashimoto;Kenji Ishida
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제20권3호
    • /
    • pp.44-54
    • /
    • 1996
  • The release of polluting gases such as NO/sub x/ of SO/sub x/ to the atmosphere from ships is causing increasing concern. To reduce destruction to the marine environment, the value of the utilization of photovoltaic energy is highly appreciated since photovoltaic energy is and alternate clean energy source to fossil fuels. The use of a photovoltaic generating system to supplement diesel engine driven electric power system on ships has been studied. The design of the photovoltaic generating system based on a photovoltaic array is presented in this paper. The amount of NO/sub x/ and SO/sub x/ emission is found to be significantly reduced for a small vessel operated within a harbour after a photovoltaic generating system is installed to supplement the diesel engine generator system.

  • PDF

선박에서 화석연료 의존도 절감을 위한 태양광 발전 (Photovoltaic Generating System on Ships to Reduce Fossil Fuel Dependence)

  • Takeshi Katagi;Yoshimi Fujii;Eiichi Nishikawa;Takeshi Hashimoto;Kenji Ishida
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제20권3호
    • /
    • pp.176-176
    • /
    • 1996
  • The release of polluting gases such as NOx of SOx to the atmosphere from ships is causing increasing concern. To reduce destruction to the marine environment, the value of the utilization of photovoltaic energy is highly appreciated since photovoltaic energy is and alternate clean energy source to fossil fuels. The use of a photovoltaic generating system to supplement diesel engine driven electric power system on ships has been studied. The design of the photovoltaic generating system based on a photovoltaic array is presented in this paper. The amount of NOx and SOx emission is found to be significantly reduced for a small vessel operated within a harbour after a photovoltaic generating system is installed to supplement the diesel engine generator system.