• 제목/요약/키워드: A${\beta}$25-35

검색결과 269건 처리시간 0.033초

Changes in the Neurogenesis and Axonal Sprouting in the Organotypic Hippocampal Slice Culture by Aβ25-35 Treatment

  • Jung, Yeon Joo;Jiang, Hui Ling;Lee, Kyung Eun
    • Applied Microscopy
    • /
    • 제42권4호
    • /
    • pp.200-206
    • /
    • 2012
  • Induction of neurogenesis can occur in the hippocampus in response to various pathological conditions, such as Alzheimer's disease. The aim of this study was to investigate the changes that occur in endogenous neural stem cells in response to amyloid beta $(A{\beta})_{25-35}$-induced neuronal cell damage in organotypic hippocampal slice cultures. Cresyl violet staining and Fluoro-Jade B staining were used to detect neuronal cell damage and changes of mossy fiber terminals were observed by Timm's staining. The immunofl uorescence staining was used to detect the newly generated cells in the subgranular zone (SGZ) of the dentate gyrus with specific marker, 5-bromo-2'-deoxyuridine (BrdU), Ki-67, Nestin, and doublecortin (DCX). In compared to control slices, neuronal cell damage was observed and the mossy fibers were expanded to CA3 area by treatment with $A{\beta}_{25-35}$. Ki-67/Nestin- and BrdU/DCX-positive cells were detected in the SGZ. In conclusion, these results demonstrate that $A{\beta}$-induced neuronal damage results in an increase in endogenous neural stem cells in rat hippocampal slice cultures not only for gliosis but also for neurogenesis.

Effects of Woo-Gui-Um on A${\beta}$ Toxicity and Memory Dysfunction in Mice

  • Hwang, Gwang-Ho;Kim, Bum-Hoi;Shin, Jung-Won;Shim, Eun-Sheb;Lee, Dong-Eun;Lee, Sang-Yul;Lee, Hyun-Sam;Jung, Hyuk-Sang;Sohn, Nak-Won;Sohn, Young-Joo
    • 대한한의학회지
    • /
    • 제30권3호
    • /
    • pp.1-14
    • /
    • 2009
  • Objectives : Alzheimer's disease (AD) is characterized by neuronal loss and extracellular senile plaque. Moreover, the cellular actions of ${\beta}$-amyloid (A${\beta}$ play a causative role in the pathogenesis of AD. This study was designed to determine whether Woo-Gui-Um, a commonly used Korean herbal medicine, has the ability to protect cortical and hippocampal neurons against A${\beta}_{25-35}$ neurotoxicity Methods : In the present study, the authors investigated the preventative effects of the water extract of Woo-Gui-Um in a mouse model of AD. Memory impairment was induced by intraventricularly (i.c.v.) injecting A${\beta}_{25-35}$ peptides into mice. Woo-Gui-Um extract was then administered orally (p.o.) for 14 days. In addition, A${\beta}_{25-35}$ toxicity on the hippocampus was assessed immunohistochemically, by staining for Tau, MAP2, TUNEL, and Bax, and by performing an in vitro study in PC12 cells. Results : Woo-Gui-Um extract had an effect to improve learning ability and memory score in the water maze task. Woo-Gui-Um extract had significant neuroprotective effects in vivo against oxidative damage and apoptotic cell death of hippocampal neurons caused by i.c.v. A${\beta}_{25-35}$. In addition, Woo-Gui-Um extract was found to have a protective effect on A${\beta}_{25-35}$-induced apoptosis, and to promote neurite outgrowth of nerve growth factor (NGF)-differentiated PC12 cells. Conclusions : These results suggest that Woo-Gui-Um extract reduces memory impairment and Alzheimer's dementia via an anti-apoptotic effect and by regulating Tau and MAP2 in the hippocampus.

  • PDF

아밀로이드 베타로 유도된 신경세포 사멸에 대한 PineXol®의 보호효과 (Protective Effect of PineXol® against Amyloid-β-induced Cell Death)

  • 한경훈;이승희;박광성;송관영;김정희;박은국;한성희
    • 한국식품영양학회지
    • /
    • 제30권6호
    • /
    • pp.1279-1285
    • /
    • 2017
  • $Amyloid-{\beta}$ protein ($A{\beta}$) is known to increase free radical production in neuronal cells, leading to cell death by oxidative stress. The purpose of this study was to evaluate the protective effects of $PineXol^{(R)}$ on $A{\beta}_{25-35}$ induced neuronal cell death. Rat pheochromocytoma (PC-12) cells were pre-treated with $100{\mu}g/mL$ of $PineXol^{(R)}$ for 2 h. The cells were exposed to single dose of $30{\mu}M$ $A{\beta}_{25-35}$ for 24 h. Cell death was assessed by a cell count kit-8 (CCK-8) assay, lactate and dehydrogenase (LDH) release assay. An Apoptotic process was analyzed by a protein expression of the Bcl-2 family using western blotting. Cell viability increased in PC-12 cells treated with both $A{\beta}_{25-35}$ and $PineXol^{(R)}$, compared to the control group. $PineXol^{(R)}$ induced a decrease of the Bcl-2 protein expression (p<0.05), while Bax and Sod1 increased (p<0.05), indicating attenuation of $A{\beta}_{25-35}$ induced apoptosis. These results suggest that $PineXol^{(R)}$ may be a good candidate for the prevention of Alzheimer's disease(AD).

Engelhardtia chrysolepis의 라디칼 소거능 및 신경세포의 산화 스트레스 보호효과 (Radical Scavenging Effect and Neuroprotective Activity from Oxidative Stress of Engelhardtia chrysolepis Leaf)

  • 김은정;이아영;최수연;서혜린;이영아;조은주
    • 생약학회지
    • /
    • 제47권3호
    • /
    • pp.251-257
    • /
    • 2016
  • In this study, the radical scavenging activity and protective effect of ethanol extract from leaf of Engelhardtia chrysolepis HANCE (ECE) against oxidative stress were investigated under in vitro and cellular system. ECE showed strong radical scavenging activities in 1,1-diphenyl-2-picrylhydrazyl, hydroxyl(${\cdot}OH$) and nitric oxide(NO) radical as a concentration-dependent manner. Particularly, strong scavenging activity against the ${\cdot}OH$ and NO radical were observed with the $IC_{50}$ value of $1.30{\mu}g/ml$ and $12.61{\mu}g/ml$, respectively. Furthermore, the cellular oxidative stress was induced by amyloid beta($A{\beta}_{25-35}$) in C6 glial cells. The treatment of $A{\beta}_{25-35}$ to C6 glial cells generated high levels of reactive oxygen species(ROS) and declined cell viability. However, production of ROS was decreased by the treatment of ECE. In addition, the cell viability was significantly increased at each concentration(10, 25, $50{\mu}g/ml$) as dose-dependent manner. The Alzheimer's disease-related protein expressions in $A{\beta}_{25-35}$-treated C6 glial cells were analyzed. The ECE treatment inhibited expression of amyloid precursor protein(APP), C-terminal fragment-${\beta}(CTF-{\beta})$, ${\beta}$-site APP cleaving enzyme(BACE), phosphorylated tau(p-tau) proteins in C6 glial cells induced by $A{\beta}_{25-35}$. The present study indicated that ECE has strong radical scavenging activity and neuroprotective effect through attenuating oxidative stress.

총명탕, 원지, 석창포가 베타아밀로이드로 유발된 학습과 기억장애에 미치는 영향 (Effects of Chongmyung-tang, Polygalae Radix and Acori Graminei Rhizoma on $A{\beta}$ Toxicity and Memory Dysfunction in Mice)

  • 박은경;심은섭;정혁상;손낙원;손영주
    • 대한한방내과학회지
    • /
    • 제29권3호
    • /
    • pp.608-620
    • /
    • 2008
  • Objectives : This study investigated the protective effects of the water extracts of Chongmyung-tang, Polygalae Radix, and Acori Graminei Rhizoma in an in vivo Alzheimer's disease (AD) mouse model. Methods : Memory impairment was induced by an intraventricular injection of $A{\beta}25-35$ peptides and subsequently Chongmyung-tang, Polygalae Radix, or Acori Graminei Rhizoma extract were administered orally for 14days. Results : In the water maze task, Chongmyung-tang, Polygalae Radix, and Acori Graminei Rhizoma extracts improved learning ability during the acquisition period and significantly increased memory scores during the retention period versus $A{\beta}-injected$ controls. Furthermore, the toxicity of $A{\beta}25-35$ on hippocampus was assessed immunohistochemically (Tau, MAP2, TUNEL, Bax) and by in vitro study. Chongmyung-tang, Polygalae Radix, and Acori Graminei Rhizoma demonstrated significant neuroprotective effects against oxidative damage and apoptotic cell death of hippocampal neurons damaged by $A{\beta}25-35$. Conclusions : These results suggested that Chongmyung-tang, Polygalae Radix and Acori Graminei Rhizoma extract improve memory impairment and reduce Alzheimer's dementia via anti-apoptotic effects and by modulating the expressions of Tau and MAP2 protein in the hippocampus.

  • PDF

일차 배양한 흰쥐 대뇌피질세포의 흥분성 및 산화적 신경세포손상에 대한 소전재조환의 억제효과 (Inhibitory Effects of Xiaoshuan Zaizao Wan on Excitotoxic and Oxidative Neuronal Damage Induced in Primary Cultured Rat Cortical Cells)

  • 조정숙
    • 약학회지
    • /
    • 제47권6호
    • /
    • pp.369-375
    • /
    • 2003
  • Xiaoshuan Zaizao Wan (XZW) has been used in China to improve hemiplegia, deviation of eye and mouth, and dysphasia due to cerebral thrombosis. To characterize pharmacological actions of XZW, we evaluated its effects on neuronal cell damage induced in primary cultured rat cortical cells by various oxidative insults, glutamate or N-methyl-D-aspartate (NMDA), and $\beta$-amyloid fragment ($A_{\beta(25-35)}$). XZW was found to inhibit the oxidative neuronal damage induced by $H_2O_2$, xanthine/xanthine oxidase, or $Fe^{2+}$/ascorbic acid. It also attenuated the excitotoxic damage induced by glutamate or NMDA. The NMDA-induced neurotoxicity was more effectively inhibited than the glutamate-induced toxicity. In addition, we found that XZW protected neurons against the $A_{\beta(25-35)}$-induced toxicity. Moreover; XZW exhibited dramatic inhibition of lipid peroxidation in rat brain homogenates and mild 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity. Taken together; these results demonstrate that XZW exerts neuroprotective effects against oxidative, excitotoxic, or $A_{\beta(25-35)}$-induced neuronal damage. These findings may provide pharmacological basis for its clinical usage treating the sequelae caused by cerebral thrombosis. Furthermore, XZW may exert beneficial effects on Alzheimer's disease and other oxidative stress-related neurodegenerative disorders.

치담(治痰) 한약의 항알츠하이머 효능 비교 연구 (Comparative study on anti-Alzheimer's effects of herbal medicines treating phlegm)

  • 곽채원;최진규;김정희;오명숙
    • 대한본초학회지
    • /
    • 제34권4호
    • /
    • pp.9-18
    • /
    • 2019
  • Objectives : It has been known to be correlated between phlegm and dementia from the perspective of oriental medicine, but it is unexplored whether herbal medicines to treat phlegm have pharmacological actions on Alzheimer's disease (AD). The aim of this study was to evaluate and to compare effects of herbal medicines to treat phlegm against AD in vitro. Methods : We selected 11 herbal medicines which treat phlegm and obtained each extract by boiling in 10-fold distilled water for 2 h. And we performed the assay of acetylcholinesterase (AChE) inhibitory effects of 11 herbal extracts. Next, we evaluated neuroprotective effects of them against amyloid $beta_{25-35}$ ($A{\beta}_{25-35}$) plaque-induced toxicity in HT22 mouse hippocampal neuronal cells using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. To investigate whether they show the anti-inflammatory effects against lipopolysaccharide (LPS), we also measured the levels of nitric oxide (NO) in BV2 microglia cells using griess reagent assay. Results : We found that Gamiyeongsin-hwan (GYH) and Cheonghunhwadam-tang (CHT) exhibited remarkable AChE inhibitory effects. In HT22 cells, Arisaematis Rhizoma, Trichosanthis Semen and Fritillariae Thunbergii Bulbus suppressed $A{\beta}_{25-35}$ plaque-induced neuronal cell death. In BV2 cells, Cheongung-hwan significantly inhibited the increase of NO contents induced by LPS and GYH and CHT showed a tendency to inhibit LPS-induced NO generation. Conclusions : These results suggest that several herbal medicines to treat phlegm showed the significant effects on AChE inhibition, neuroprotection against $A{\beta}_{25-35}$ plaque-induced toxicity, and inhibition of NO generation. Therefore, we demonstrate the possibility that herbal medicines with treating phlegm has effects against AD.

Populus tomentiglandulosa protects against amyloid-beta25-35-induced neuronal damage in SH-SY5Y cells

  • Yu Ri Kwon;Ji-Hyun Kim;Sanghyun Lee;Hyun Young Kim;Eun Ju Cho
    • Journal of Applied Biological Chemistry
    • /
    • 제66권
    • /
    • pp.408-415
    • /
    • 2023
  • Alzheimer's disease constitutes a large proportion of all neurodegenerative diseases and is mainly caused by excess aggregation of amyloid beta (Aβ), which results in oxidative stress, inflammation, and apoptosis in the neurons. Populus tomentiglandulosa belongs to the Salicaceae family and is widely distributed in Korea; the antioxidant activities of the extract and fractions from P. tomentiglandulosa have been demonstrated in previous studies. Specifically, the ethyl acetate (EtOAc) fraction of P. tomentiglandulosa (EtOAc-PT) shows the most powerful antioxidative activity. Therefore, the present study investigates the protective effects of EtOAc-PT against neuronal damage in Aβ25-35-stimulated SH-SY5Y cells. EtOAc-PT restored cell viability significantly as well as inhibited the levels of reactive oxygen species and lactate dehydrogenase release compared to the Aβ25-35-induced control group. Furthermore, the inflammation- and apoptosis-related protein expressions were investigated to demonstrate its neuroprotective mechanism. EtOAc-PT downmodulated the expressions of inducible nitric oxide synthase, cyclooxygenase-2, B-cell lymphoma 2 associated X, and B-cell lymphoma 2. Thus, the findings show that EtOAc-PT has protective effects against Aβ25-35 by suppressing oxidative stress, inflammation, and apoptosis.

Protective Effect of Citrate against $A{\beta}$-induced Neurotoxicity in PC12 Cells

  • Yang, Hyun-Duk;Son, Il-Hong;Lee, Sung-Soo;Park, Yong-Hoon
    • Molecular & Cellular Toxicology
    • /
    • 제4권2호
    • /
    • pp.157-163
    • /
    • 2008
  • Formation of ${\beta}$-amyloid $(A{\beta})$ fibrils has been identified as one of the major characteristics of Alzheimer's disease (AD). Inhibition of $A{\beta}$ fibril formation in the CNS would be attractive therapeutic targets for the treatment of AD. Several small compounds that inhibit amyloid formation or amyloid neurotoxicity in vitro have been known. Citrate has surfactant function effect because of its molecular structure having high anionic charge density, in addition to the well-known antibacterial and antioxidant properties. Therefore, we hypothesized that citrate might have the inhibitory effect against $A{\beta}$ fibril formation in vitro and have the protective effect against $A{\beta}$-induced neurotoxicity in PC12 cells. We examined the effect of citrate against the formation of $A{\beta}$ fibrils by measuring the intensity of fluorescence in thioflavin-T (Th-T) assay of between $A{\beta}_{25-35}$ groups treated with citrate and the control with $A{\beta}_{25-35}$ alone. The neuroprotective effect of citrate against $A{\beta}$-induced toxicity in PC12 cells was investigated using the WST-1 assay. Fluorescence spectroscopy showed that citrate inhibited dose-dependently the formation of $A{\beta}$ fibrils from ${\beta}$-amyloid peptides. The inhibition percentages of $A{\beta}$ fibril formation by citrate (1, 2.5, and 5 mM) were 31%, 60%, and 68% at 7 days, respectively in thioflavin-T (Th-T) assay. WST-1 assay revealed that the toxic effect of $A{\beta}_{25-35}$ was reduced, in a dose-dependent manner to citrate. The percentages of neuroprotection by citrate (1, 2.5, and 5 mM) against $A{\beta}-induced$ toxicity were 19%, 31 %, and 34%, respectively. We report that citrate inhibits the formation of $A{\beta}$ fibrils in vitro and has neuroprotective effect against $A{\beta}$-induced toxicity in PC12 cells. Neuroprotective effects of citrate against $A{\beta}$ might be, to some extent, attributable to its inhibition of $A{\beta}$ fibril formation. Although the mechanism of anti-amyloidogenic activity is not clear, the possible mechanism is that citrate might have two effects, salting-in and surfactant effects. These results suggest that citrate could be of potential therapeutic value in Alzheimer's disease.