References
- Porat, Y., Abramowitz, A. & Gazit, E. Inhibition of amyloid fibril formation by polyphenols: structural similarity and aromatic interactions as a common inhibition mechanism. Chem Biol Drug Des 67:27-37 (2006) https://doi.org/10.1111/j.1747-0285.2005.00318.x
-
Vetrivel, K. S. & Thinakaran, G. Amyloidogenic processing of
${\beta}$ -amyloid precursor protein in intracellular compartments. Neurology 66:S69-S73 (2006) https://doi.org/10.1212/01.wnl.0000192393.05850.ec - Selkoe, D. J. Alzheimer's disease: genes, proteins, and therapy. Physiol Rev 81:741-766 (2001) https://doi.org/10.1152/physrev.2001.81.2.741
- Sisodia, S. S. & St George-Hyslop, P. H. Gamma- Secretase, Notch, Abeta and Alzheimer's disease: where do the presenilins fit in? Nat Rev Neurosci 3:281-290 (2002) https://doi.org/10.1038/nrn785
- Pereira, C. et al. Alzheimer's disease-associated neurotoxic mechanisms and neuroprotective strategies. Curr Drug Targets CNS Neurol Disord 4:383-403 (2005). https://doi.org/10.2174/1568007054546117
- Selkoe, D. J. Translating cell biology into therapeutic advances in Alzheimer's disease. Nature 399:A23-A31 (1999) https://doi.org/10.1038/19866
- Yankner, B. A. Mechanisms of neuronal degeneration in Alzheimer's disease. Neuron 16:921-932 (1996) https://doi.org/10.1016/S0896-6273(00)80115-4
- Pike, C. J., Walencewicz, A. J., Glabe, C. G. & Cotman, C. W. In vitro aging of beta-amyloid protein causes peptide aggregation and neurotoxicity. Brain Res 563:311-314 (1991) https://doi.org/10.1016/0006-8993(91)91553-D
- Pike, C. J. et al. Neurodegeneration induced by betaamyloid peptides in vitro: the role of peptide assembly state. J Neurosci 13:1676-1687 (1993) https://doi.org/10.1523/JNEUROSCI.13-04-01676.1993
- Lorenzo, A. & Yankner, B. A. Beta-amyloid neurotoxicity requires fibril formation and is inhibited by Congo red. Proc Natl Acad Sci U S A 91:12243-12247 (1994)
- Citron, M. Strategies for disease modification in Alzheimer's disease. Nat Rev Neurosci 5:677-685 (2004) https://doi.org/10.1038/nrn1495
- Scarpini, E., Scheltens, P. & Feldman, H. Treatment of Alzheimer's disease: current status and new perspectives. Lancet Neurol 2:539-547 (2003) https://doi.org/10.1016/S1474-4422(03)00502-7
- Seiffert, D. et al. Presenilin-1 and -2 are molecular targets for gamma-secretase inhibitors. J Biol Chem 275:34086-34091 (2000) https://doi.org/10.1074/jbc.M005430200
- McConnell, S. & Riggs, J. Alzheimer's research: can it help save our nation's entitlement programs? Alzheimer Dementia 1:84-86 (2005) https://doi.org/10.1016/j.jalz.2005.06.005
- Cummings, J. L., Doody, R. & Clark, C. Disease-modifying therapies for Alzheimer disease: Challenges to early intervention. Neurology 69:1622-1634 (2007) https://doi.org/10.1212/01.wnl.0000295996.54210.69
- Kisilevsky, R. et al. Arresting amyloidosis in vivo using small-molecule anionic sulphonates or sulphates: implications for Alzheimer's disease. Nat Med 1:143-148 (1995) https://doi.org/10.1038/nm0295-143
- Allsop, D., Howlett, D., Christie, G. & Karran, E. Fibrillogenesis of beta-amyloid, Biochem Soc Trans 26: 459-463 (1998) https://doi.org/10.1042/bst0260459
- Pappolla, M. et al. Inhibition Alzheimer beta-fibrillogenesis by melatonin. J Biol Che 273: 7185-7188 (1998) https://doi.org/10.1074/jbc.273.13.7185
- Salomon, A. R., Marcinowski, K. J., Friedland, R. W. & Zagorski, M. G. Nicotine inhibits amyloid formation by the beta-peptide. Biochemistry 35:13568-13578 (1996) https://doi.org/10.1021/bi9617264
- Mook-Jung, I. et al. Estrogen blocks neurotoxic effects of beta-amyloid (1-42) and induces neurite extension in B103 cells. Neurosci Lett 235:101-104 (1997) https://doi.org/10.1016/S0304-3940(97)00632-0
- Merlini, G. et al. Interaction of the anthracycline 4'- iodo-4'-deoxydoxorubicin with amyloid fibrils: inhibition of amyloidogenesis. Proc Natl Acad Sci U S A 92:2959-2963 (1995)
- Soto, C., Kindy, M. S., Baumann, M. & Frangione, B. Inhibition of Alzheimer's amyloidosis by peptides that prevent beta-sheet conformation. Biochem Biophys Res Commun 226:672-680 (1996) https://doi.org/10.1006/bbrc.1996.1413
- Soto, C. et al. Beta-sheet breaker peptides inhibit fibrillogenesis in a rat brain model of amyloidosis: Implications for Alzheimer's therapy. Nat Med 4:822-826 (1998) https://doi.org/10.1038/nm0798-822
- Subramaniam, R. et al. The free radical antioxidant vitamin E protects cortical synaptosomal membranes from amyloid beta-peptide (25-35) toxicity but not from hydroxynonenal toxicity: relevance to the free radical hypothesis of Alzheimer's disease, Neurochem Res 23:1403-1410 (1998) https://doi.org/10.1023/A:1020754807671
- Goodman, Y., Steiner, M. R., Steiner, S. M. & Mattson, M. P. Nordihydroguaiaretic acid protects hippocampal neurons against amyloid beta-peptide toxicity, and attenuates free radical and calcium accumulation, Brain Res 654:171-176 (1994) https://doi.org/10.1016/0006-8993(94)91586-5
- Kihara, T. et al. Nicotinic receptor stimulation protects neurons against beta-amyloid toxicity, Ann Neurol 42:159-163 (1997) https://doi.org/10.1002/ana.410420205
- Ono, K. et al. Vitamin A exhibits potent antiamyloidogenic and fibril-destabilizing effects in vitro. Exp Neurol 189:380-392 (2004) https://doi.org/10.1016/j.expneurol.2004.05.035
- Ono, K., Hasegawa, K., Naiki, H. & Yamada, M. Preformed beta-amyloid fibrils are destabilized by coenzyme Q10 in vitro, Biochem Biophys Res Commun 330:111-116 (2005) https://doi.org/10.1016/j.bbrc.2005.02.132
- Lomakin, A. et al. On the nucleation and growth of amyloid beta-protein fibrils: Detection of nuclei and quantitation of rate constants. Proc Natl Acad Sci U S A 93:1125-1129 (1996)
- Lin, S. J., Shiao, Y. J., Chi, C. W. & Yang, L. M. Abeta aggregation inhibitors: Part 1. Synthesis and biological activity of phenylazo benzenesulfonamides. Bioorg Med Chem Lett 14:1173-1176 (2004) https://doi.org/10.1016/j.bmcl.2003.12.086
- Marcinowski, K. J., Shao, H., Clancy, E. L. & Zagorski, M. G. Solution structure model of residues 1-28 of the amyloid beta peptide when bound to micelles. J Am Chem Soc 120:11082-11091 (1998) https://doi.org/10.1021/ja9738687
- Wang, S. S., Chen, Y. T. & Chou, S. W. Inhibition of amyloid fibril formation of beta-amyloid peptides via the amphiphilic surfactants. Biochim Biophys Acta 1741:307-313 (2005) https://doi.org/10.1016/j.bbadis.2005.05.004
- Wood, S. J. et al. Selective inhibition of Abeta fibril formation. J Biol Chem 271:4086-4092 (1996) https://doi.org/10.1074/jbc.271.8.4086
- Pike, C. J. et al. Structure-activity analyses of betaamyloid peptides: contributions of the beta 25-35 region to aggregation and neurotoxicity. J Neurochem 64:253-265 (1995) https://doi.org/10.1046/j.1471-4159.1995.64010253.x
- Riviere, C. et al. Inhibitory activity of stilbenes on Alzheimer's beta-amyloid fibrils in vitro. Bioorg Med Chem 15:1160-1167 (2007) https://doi.org/10.1016/j.bmc.2006.09.069
- Hilbich, C. et al. Substitutions of hydrophobic amino acids reduce the amyloidogenicity of Alzheimer's disease beta A4 peptides. J Mol Biol 228:460-473 (1992) https://doi.org/10.1016/0022-2836(92)90835-8
- Barrow, C. J., Yasuda, A., Kenny, P. T. & Zagorski, M. G. Solution conformations and aggregational properties of synthetic amyloid beta-peptides of Alzheimer's disease. Analysis of circular dichroism spectra, J Mol Biol 225:1075-1093 (1992) https://doi.org/10.1016/0022-2836(92)90106-T
- Soto, C., Castano, E. M., Frangione, B. & Inestrosa, N. C. The alpha-helical to beta-strand transition in the amino-terminal fragment of the amyloid beta-peptide modulates amyloid formation. J Biol Chem 270:3063-3067 (1995) https://doi.org/10.1074/jbc.270.7.3063
- Soto, C. & Castano, E. M. The conformation of Alzheimer's beta peptide determines the rate of amyloid formation and its resistance to proteolysis. Biochem J 314:701-707 (1996) https://doi.org/10.1042/bj3140701
- Ghanta, J., Shen, C. L., Kiessling, L. L. & Murphy, R. M. A strategy for designing inhibitors of beta-amyloid toxicity. J Biol Chem 271:29525-29528 (1996) https://doi.org/10.1074/jbc.271.47.29525
- Pallitto, M. M. et al. Recognition sequence design for peptidyl modulators of beta-amyloid aggregation and toxicity. Biochemistry 38:3570-3578 (1999) https://doi.org/10.1021/bi982119e
- Findeis, M. A. et al. Modified-peptide inhibitors of amyloid beta-peptide polymerization. Biochemistry 38:6791-6800 (1999) https://doi.org/10.1021/bi982824n
- Findeis, M. A. et al. Characterization of cholyl-leuval- phe-phe-ala-OH as an inhibitor of amyloid betapeptide polymerization. Amyloid 8:231-241 (2001) https://doi.org/10.3109/13506120108993819
- McWilliam Leitch, E. C. & Stewart, C. S. Susceptibility of Escherichia coli O157 and non-O157 isolates to lactate. Lett Appl Microbiol 35:176-180 (2002) https://doi.org/10.1046/j.1472-765X.2002.01164.x
- Sallam, K. I. Antimicrobial and antioxidant effects of sodium acetate, sodium lactate, and sodium citrate in refrigerated sliced salmon. Food Control 18:566-575 (2007) https://doi.org/10.1016/j.foodcont.2006.02.002
- Puntel, R. L. et al. Antioxidant properties of Krebs cycle intermediates against malonate pro-oxidant activity in vitro: a comparative study using the colorimetric method and HPLC analysis to determine malondialdehyde in rat brain homogenates. Life Sci 81:51-62 (2007) https://doi.org/10.1016/j.lfs.2007.04.023
- Yonekawa, C., Nakae, H., Tajimi, K. & Asanuma, Y. Effectiveness of combining plasma exchange and continuous hemodiafiltration in patients with postoperative liver failure. Artificial Organs 29:324-328 (2005) https://doi.org/10.1111/j.1525-1594.2005.29054.x
- Hofmeister, F. Zur Lehre von der Wirkung der Salze. [Title translation: About the science of the effect of salts.] Arch Exp Pathol Pharmakol 24:247-260 (1888) https://doi.org/10.1007/BF01918191
- Zhang, Y. & Cremer, P. S. Interactions between macromolecules and ions: The Hofmeister series. Curr Opin Chem Biol 10:658-663 (2006) https://doi.org/10.1016/j.cbpa.2006.09.020
- Ishiyama, M. et al. A combined assay of cell viability and in vitro cytotoxicity with a highly water-soluble tetrazolium salt, neutral red and crystal violet. Biol Pharm Bull 19:1518-1520 (1996) https://doi.org/10.1248/bpb.19.1518