• Title/Summary/Keyword: 6Membrane fluidity

Search Result 50, Processing Time 0.022 seconds

Investigation of Anti-aging Effect and Determination of Chemical Structures of Pine Needle Extract (PNE) through the Animal Experiments I. Effects of PNE on Membrane Fluidity and Oxidative Stress in Liver of SD Rats (동물실험을 통한 솔잎(松葉) 유효성분의 항노화효과 구명 및 구조 해명 I. 간장의 세포막 유동성과 산화적 스트레스에 미치는 솔잎 추출물의 영향)

  • 최진호;김대익;박수현;김동우;이종수;김현숙
    • Journal of Life Science
    • /
    • v.9 no.4
    • /
    • pp.473-480
    • /
    • 1999
  • This study was designed to investigate the effects of pine (Pinus densiflora Sieb et Zucc) needle extract (PNE) on membrane fluidity and oxidative stress in liver membranes of Sprague-Dawley (SD) rats as a study on investigation of anti-aging effect and determination of chemical structures of PNE through the animal experiments. Male SD rats were fed basic diets (control group) and experimental diets (0.5% and 1.0%-PNE group) for 6 weeks. Administrations of 0.5% and 1.0%-PNE resulted in a marked decreases (15∼25% and 23∼26%, respectively) in cholesterol accumulations of liver mitochondria and microsomes compared with control group. Membrane fluidities were significantly increased (15∼25%) in liver microsomes of 0.5% and 1.0%-PNE groups compared with control group. Formations of basal and induced oxygen radicals (BOR and IOR) in liver mitochondria were significantly inhibited (11∼12% and 10∼15%, respectively) by administrations of 0.5% and 1.0%-PNE compared with control group. Lipid peroxide (LPO) levels were remarkbly decreased about 20% in liver mitochondria and microsomes of 0.5% and 1.0%-PNE groups compared with control group. Oxidized protein levels calculated with carbonyl group were significantly decreased about 15% in liver mitochondria of 1.0%-PNE group compared with control group. These results suggest that PNE may play a effective role in a attenuating a oxidative stress and increasing a membrane fluidity.

  • PDF

Effects of Calcium Channel Blockers on Human Erythrocyte Ghost Membranes

  • Park, Aeh-Jin;Shin, Young-Hee;Lee, Chi-Ho
    • Archives of Pharmacal Research
    • /
    • v.18 no.6
    • /
    • pp.402-409
    • /
    • 1995
  • The effects of calcium channel blockers (CAB's) verapamil, diltiazem and nicardipine, on erythrocyte ghost membranes have been studied. Using the fluorospectroscopic method, it was observed that the fluidity of the inner layer of ghost membranes was increased with an increase of drug concentrations but did not any changes in the fluidity of the outer layer. These drugs showed protectuve effect against hypotonic hemolysis of erythrocytes. Thus, the expansion of surface area in response to corpuscular volume of erythrocytes in the presence of CAB's is seemed to play an important role in protecting hypotonic hemolysis of erythrocytes.

  • PDF

Effects of Pine Needle Ethyl Acetate Fraction on Membrane Fluidity and Oxidative Stress in Brain Membranes of Rats (뇌 세포막의 유동성과 산화적 스트레스에 미치는 솔잎(Pine Needle) 에틸아세테이트획분의 영향)

  • 최진호;김대익;배승진;박시향;김남주;조원기;김군자;김창목
    • Journal of Life Science
    • /
    • v.13 no.5
    • /
    • pp.692-698
    • /
    • 2003
  • This study was designed to investigate the effects of ethyl acetate (EtOAc) fraction of pine (Pinus densiflora Sieb et Zucc) needle on membrane fluidity (MF), basal and induced oxygen radical (BOR and IOR), lipid peroxide (LPO) and oxidized protein (OP) as a oxidative stress, and lipofuscin (LF) in brain membranes of Sprague-Dawley (SD) rats. Male SD rats were fed basic diets (control) and experimental diets (EtOAc-25, EtOAc-50 and EtOAc-100) for 45 days. MF was significantly increased (about 10%) in mitochondria of EtOAc-100 group. BOR and IOR formations in mitochondria were significantly inhibited (about 9∼10% and 17∼24%, respectively) in EtOAc-50 and EtOAc-100 groups, while BOR and IOR formations in microsomes were significantly inhibited (about 12∼17% and 12∼16%, respectively) in EtOAc-50 and EtOAc-100 groups compared with control group. LPO levels in mitochondria and microsomes were significantly inhibited (about 9∼l2% and 12∼19%, respectively) in EtOAc-50 and EtOAc-100 groups, whereas significant difference between OP or LF levels and control group in these membranes could not be obtained. These results suggest that administrations of ethyl acetate fraction of pine needle may play an effective role in an attenuating an oxidative stress and in increasing membrane fluidity.

Effect of trans Fatty acid containing Fats on Cholesterol Metabolism and Hepatic Membrane Fluidity in Rats (trans 지방산 함유 지방이 콜레스테롤대사와 간 세포막 유동성에 미치는 영향)

  • 김찬희;원미숙;송영선
    • Journal of Life Science
    • /
    • v.12 no.6
    • /
    • pp.769-779
    • /
    • 2002
  • Although negative evidences of trans fatty acids(tFAs) are gradually increasing, the hypercholesterolemic effect of tFAs are controversial and its biological significances are still not known. The objective of this study was to examine the effect of dietary tFAs on cholesterol metabolism and membrane fluidity in rats. Animals were fed diets containing 0.5% cholesterol and 20% test fats(margarine, butter, corn oil) for 8 weeks. Each test fats(margarine, butter, corn oil) contained 25%, 8.5% and no tFAs, respectively, Plasma total triglyceride(TG) were not different among diet treatments. Feeding trans fat diets (margarine and butter) lowered plasma cholesterol. Specially, butter diet elevated LDL-cholesterol and decreased HDL-cholesterol levels, resulting in the highest atherogenic index among diet treatments. Hepatic cholesterol concentration and HMG CoA reductase activity were also decreased, whereas fecal excretion of cholesterol was increased in trans fat-fed animals. trans fat containing diets also decreased hepatic membrane fluidity. From these results, it can be concluded that hypercholesterolemic effect of tFAs can be modulated by the fatty acid composition of diets, but its spatial cofiguration may help behave like saturated fatty acid in membrane fluidity.

Effects of Dopamine.HCI on Structural Parameters of Bovine Brain Membranes

  • Bae, Moon-Kyoung;Huh, Min-Hoi;Lee, Seung-Woo;Kang, Hyun-Gu;Pyun, Jae-Ho;Kwak, Myeong-Hee;Jang, Hye-Ock;Yun, Il
    • Archives of Pharmacal Research
    • /
    • v.27 no.6
    • /
    • pp.653-661
    • /
    • 2004
  • Fluorescence probes located in different membrane regions were used to evaluate the effect of dopamine$.$HCI on the structural parameters (transbilayer lateral mobility, annular lipid fluidity, protein distribution, and thickness of the lipid bilayer) of synaptosomal plasma membrane vesicles (SPMV), which were obtained from the bovine cerebral cortex. An experimental procedure was used based on selective quenching of 1,3-di(1-pyrenyl)propane (Py-3-Py) by trinitrophenyl groups, and radiationless energy transfer from the tryptophan of membrane pro-teins to Py-3-Py and energy transfer from Py-3-Py monomers to 1-anilinonaphthalene-8-sulfonic acid (ANS) was also utilized. Dopamine$.$HCI increased both the bulk lateral mobility and annular lipid fluidity, and it had a greater fluidizing effect on the inner monolayer than on the outer monolayer. Furthermore, the drug had a clustering effect on membrane proteins.

Effects of Godulbaegi Extracts on the Stability and Fluidity of Phospholipid Liposomal Membranes (고들빼기 추출물이 인지질막 Liposome의 안정성 및 유동성에 미치는 영향)

  • 배송자;노승배;정복미
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.27 no.3
    • /
    • pp.508-517
    • /
    • 1998
  • We investigated the effects of godulbaegi extracts on the physiochemical properties of biological membranes as membrane stability and fluidity employing the phospholipid liposomal membrances as a biomembrane-mimetic system. The addition of the godulbaegi extracts to the phospholipid exterted great effects stagbilized the barrier function of the liposomal membranes in proportion to the concentration of the additive and significantly increased the membranes fluidity. The values of the fluorescence polarization of 1,6-diphenyl 1,3,5-hexatriene (DPH) decreased gradually as the temperature increased, and decreased abruptly near the phase transition temperature (Tm) of the liposome from gel to liquid crystalline state as usual. These results suggest that the activities of the godulbaegi extracts to enhance the stability and fluidity of the liposomal membranes have implication in their biological activities.

  • PDF

Effect of Pine Needle Extract (PNE) on Physilolgical Activity of SD Rats III. Feeding Effect of PNE on Fluidity and Neurotransmitter-Related Enztmes in Brain Membranes of SD Rats (흰쥐의 생리활성에 미치는 송엽(松葉) 추출물(PNE)의 영향 III. 뇌세포막의 유동성 및 신경전달관련 효소의 활성에 미치는 PNE의 투여효과)

  • Choi, Jin-Ho;Kim, Jung-Hwa;Kim, Dong-Woo;Hwang, Chan-Ho;Kim, Dae-Ik;Lee, Jong-Soo
    • Journal of Life Science
    • /
    • v.8 no.2
    • /
    • pp.167-172
    • /
    • 1998
  • To investigate the effect of pine needle extract (PNE) on membrane fluidirt and neurotransmiter-related enzymes in brain of Spragu-Dawley(SD), male SD rats were fed basic diets (control group), and experimantal diets (PNE group)with 0.5% and 0.1% fo PNE for 6 weeks. pine (pinus tabulaeformis C$_{ARR}$ is one of the popular plant drugs which has used as a medicine in Asia. Cholesterol levels in brain mitochondria of 0.5%-PNE and 0.1%-PNDE groups were significantly decreased in 15% and 25%, respectively, compared with control group, but cholesterol levels in brain microsomes of these PNE groups howed almost no change compared with control group. Lipofuscin accumulations in brain membranes of 0.5%-PNE and 0.1%-PNE groups were sgnificantly inhibited in 18% and 21%, respectively, compared with control group. Brain memberance fluidity was also activated in 50% and 100% by the administration of 0.5%-PNE and 0.1%-PNE. higher acetylcholinesterase(15% and25%) and lower monoamine oxidase B (25% and 15%0 activities were effectively modulated by the administration of 0.5%-PNE and 0.1%-PNDE. These results suggest that more beneficial effects such as inhibition of cholesterol and lipofuscin, increase of membrane fluidity, higher acetylcholinesterase and lower monoamone oxidase activities in brain membranes of SD rats may be effectively modulated by administration of pine needle extract (PNE).

  • PDF

pH Stress Alters Cytoplasmic Membrane Fluidity and atpB Gene Expression in Streptococcus mutans (pH stress가 Streptococcus mutans의 형질막 유동성 및 atpB 유전자 발현에 미치는 영향)

  • Cho, Chul Min;Jung, Seung Il;Kim, Myung Sup;Lee, Sae A;Kang, Jung Sook
    • Journal of Life Science
    • /
    • v.27 no.1
    • /
    • pp.15-22
    • /
    • 2017
  • Streptococcus mutans (S. mutans), which plays a major role in the etiology of human dental caries, is able to tolerate exposure to acid shock in addition to its acidogenicity. We investigated the effects of pH stress on membrane fluidity, activities and expression levels of F-ATPase, and proton permeability in S. mutans. Using 1,6-diphenyl-1,3,5-hexatriene, we observed membrane ordering at pH 4.8 and pH 8.8. The ordering effects were larger at pH 4.8 in cytoplasmic membranes isolated from S. mutans (CMSM). Increasing pH resulted in a decrease in the activities and expression levels of F-ATPase. The proton permeability was decreased at both acidic and alkaline pHs, and the lowest permeability was observed at pH 4.8. The lower permeability at pH 8.8 than pH 6.8 is likely to be caused by the decreased proton influx due to the decreased CMSM fluidity. In addition, it seems to be evident that extremely low permeability at pH 4.8 was caused by the decreased proton influx due to the decreased CMSM fluidity as well as the increased proton efflux due to the increased activity and expression level of F-ATPase. It is likely that CMSM fluidity and F-ATPase activity are two major key factors that determine proton permeability in S. mutans. We suggest that CMSM fluidity plays an important role in the determination of proton permeability, which sheds light on the possibility of using nonspecific membrane fluidizers, e.g., ethanol, for anti-caries purposes.

The Effect of Ethanol on the Physical Properties of Neuronal Membranes

  • Bae, Moon-Kyoung;Jeong, Dong-Keun;Park, No-Soo;Lee, Cheol-Ho;Cho, Bong-Hye;Jang, Hye-Ock;Yun, Il
    • Molecules and Cells
    • /
    • v.19 no.3
    • /
    • pp.356-364
    • /
    • 2005
  • Intramolecular excimer formation of 1,3-di(1-pyrenyl) propane(Py-3-Py) and fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH) were used to evaluate the effect of ethanol on the rate and range of lateral and rotational mobilities of bulk bilayer structures of synaptosomal plasma membrane vesicles (SPMVs) from the bovine cerebral cortex. Ethanol increased the excimer to monomer fluorescence intensity ratio (I'/I) of Py-3-Py in the SPMVs. Selective quenching of both DPH and Py-3-Py by trinitrophenyl groups was used to examine the range of transbilayer asymmetric rotational mobility and the rate and range of transbilayer asymmetric lateral mobility of SPMVs. Ethanol increased the rotational and lateral mobility of the outer monolayer more than of the inner one. Thus ethanol has a selective fluidizing effect within the transbilayer domains of the SPMVs. Radiationless energy transfer from the tryptophans of membrane proteins to Py-3-Py was used to examine both the effect of ethanol on annular lipid fluidity and protein distribution in the SPMVs. Ethanol increased annular lipid fluidity and also caused membrane proteins to cluster. These effects on neuronal membranes may be responsible for some, though not all, of the general anesthetic actions of ethanol.

Effect of Menhaden Oil Feeding on Protein Kinase C Activity and Membrane Phospholipid Profiles in Mouse Epidermal Cells (지방질원으로서 어유가 백서 상피세포의 인지질 조성 및 Protein Kinase C 활성에 미치는 영향)

  • Choe, Myeon
    • Journal of Nutrition and Health
    • /
    • v.27 no.5
    • /
    • pp.419-428
    • /
    • 1994
  • To investigate the effect of dietary menhaden oil on protein kinase C (PKC) activity and membrane phospholipid composition in epidermal cells, female BALB/C mice were fed either menhaden oil or corn oil with two different levels(5% or 20%) for 6 weeks. Membrane phosphatidycholine(PC) was decreased in menhaden oil-fed group. Eicosapentaenoic acid(EPA) and Docosahexaenoic acid(DHA) were only presented in the acyl chain of membrane phospholipid of menhaden oil-fed mice, so that membrane fluidity of the group could be different from the other group. Both cytosolic and membrane-associated PKC activity in epidermal cells were decreased in menhaden oil-fed mice when compare with corn oil-fed mice. Furthermore, rate of PKC transfer from cytosol to membrane in menhaden oil-fed group was not as fast as in corn oil-fed group. Based on these observations, dietary menhaden oil might act differently from other dietary fat in carcinogenesis.

  • PDF