DOI QR코드

DOI QR Code

Effect of trans Fatty acid containing Fats on Cholesterol Metabolism and Hepatic Membrane Fluidity in Rats

trans 지방산 함유 지방이 콜레스테롤대사와 간 세포막 유동성에 미치는 영향

  • 김찬희 (인제대학교 식품생명과학부 및 식품과학연구소) ;
  • 원미숙 (기초과학연구소 부산분소) ;
  • 송영선 (인제대학교 식품생명과학부 및 식품과학연구소)
  • Published : 2002.12.01

Abstract

Although negative evidences of trans fatty acids(tFAs) are gradually increasing, the hypercholesterolemic effect of tFAs are controversial and its biological significances are still not known. The objective of this study was to examine the effect of dietary tFAs on cholesterol metabolism and membrane fluidity in rats. Animals were fed diets containing 0.5% cholesterol and 20% test fats(margarine, butter, corn oil) for 8 weeks. Each test fats(margarine, butter, corn oil) contained 25%, 8.5% and no tFAs, respectively, Plasma total triglyceride(TG) were not different among diet treatments. Feeding trans fat diets (margarine and butter) lowered plasma cholesterol. Specially, butter diet elevated LDL-cholesterol and decreased HDL-cholesterol levels, resulting in the highest atherogenic index among diet treatments. Hepatic cholesterol concentration and HMG CoA reductase activity were also decreased, whereas fecal excretion of cholesterol was increased in trans fat-fed animals. trans fat containing diets also decreased hepatic membrane fluidity. From these results, it can be concluded that hypercholesterolemic effect of tFAs can be modulated by the fatty acid composition of diets, but its spatial cofiguration may help behave like saturated fatty acid in membrane fluidity.

식생활의 변화로 인해 fast food 및 가공식품의 소비가 급속히 증가하고 있으며 이러한 식품에 많이 함유되어 있는 trans 지방산의 생리적 기능에 대한 관심이 모아지고 있다. 따라서 본 연구에서는 한국인이 즐겨 섭취하는 유지중 trans 지방산 함량을 함유하고 있는 마가린, 버터의 장기간 섭취가 횐쥐의 콜레스테롤 대사와 세포막 유동성에 미치는 영향을 옥수수유와 비교하여 trans 지방산 함유 식품의 생리기능성을 제시하고자 하였다. 이유 직후의 흰쥐(S.D. male)를 trans 지방산 함량이 다른 마가린(25%)과 버터(8.5%), 옥수수유를 포함하는 식이로 각각 8주간 섭취시켜 사육한 결과, 체중증가와 1일 식이 섭취량은 식이군간에 차이가 없었으나 trans 지방산을 함유한 식이군(마가린, 버터)의 식이효율이 감소하였다. 혈장 지질 조성에서 중성지방 농도는 차이가 없었지만, 콜레스테롤 농도는 옥수수유 식이군에 비해 trans 지방산을 함유한 식이군에서 유의적으로 낮았다. 지단백 획분 중 LDL 콜레스테롤 농도는 옥수수유 식이군에 비해 마가린 식이군에서 유의적으로 낮았으며, 버터 식이군에서 유의적으로 높았다. HDL 콜레스테롤 농도는 버터 식이군이 다른 식이군에 비해 낮았으며 그 결과 버터 식이군의 동맥경화지수가 가장 높았다. 또한 간 중성지방 함량은 마가린과 옥수수유 식이군에 비해 버터 식이군에서 낮았으며 콜레스테롤의 농도는 옥수수유 식이군에서 가장 높았다. 간 조직으로의 trans 지방산의 축적 정도는 마가린 식이군에서 가장 높았으며 간의 HMG-CoA reductase 활성은 버터와 마가린 식이군에서 다소 감소하였다. 분변으로의 콜레스테롤 배설량은 trans 지방산을 함유한 마가린과 버터 식이군에서 유의적으로 높았으며 배설되는 trans 지방산 함량은 마가린 식이군에서 가장 높았다. 세포막 유동성은 옥수수유군에 비해 마가린과 버터식이군에서 유의적으로 감소하였다. 본 연구의 결과로 미루어 볼 때 trans 지방산 함유 지방 섭취에 의한 고콜레스테롤혈증 유발효과는 확인할 수 없었으며, trans 지방산의 섭취가 분변으로의 콜레스테롤 배설을 증가시키고 HMG-CoA reductase 활성을 저하시켜 혈장 콜레스테롤을 감소시킨 것으로 사료되며 버터군에서 동맥경화지수가 가장 높게 나타난 것은 버터의 포화지방산, 특히 미리스틴산과 팔미트산의 높은 함량 때문으로 사료된다. 그러나 마가린과 버터식이군의 세포막 유동성이 현저히 감소한 것은 세포막에서 trans 지방산이 포화지방산과 유사한 거동을 보이는 때문으로 풀이된다.

Keywords

References

  1. J. Am. Oil Chem. Soc. v.75 Determination of trans fatty acids in hydrogenated vegetable oils by attenuated total refraction infrared spectroscopy : two limited collaborative studies Adams, M.;M. Chew;S. Wasserman;A. McCollm;R. E. McDonald;M. M. Mossoba https://doi.org/10.1007/s11746-998-0052-5
  2. Am. J. Clin. Nutr. v.65 Stearic acid, trans fatty acids and dairy fat : effects on serum and lipoprotein lipids, apolipoproteins, lipoprotein(a), and lipid transfer proteins in healty subjects Aro A.;M. Jauhianinen;R. Partanen;I. Salminen;M. Mutanen
  3. Am. J. Clin. Nutr. v.66 no.s Health effects of trans fatty acids Ascherio, A.;C. Willet
  4. Am. J. Clin. Nutr. v.63 Position paper on trans fatty acids Bethesda, M. D.
  5. Lipids v.20 Influence of dietary partially hydrogenated vegetable and marine oils on membrane composition and function of liver microsomes and platelets in the rat Blomstrand, R.;U. Diczfalusy;L. Sisfontes;L. Svensson https://doi.org/10.1007/BF02534261
  6. Am. J. Clin. Nutr. v.66 Trans fatty acids infant and fetal development Calson, S. E.;M. T. Clandinin;H. W. Cook;E. A. Emken;L. T. Filer
  7. Lipoprotein analysis : A practical approach Converse, C. A.;R. E. Skinner
  8. Am. Nutr. Metab. v.39 Do trans fatty acids impair linoleic acid metabolism in children Decsi, T.;B. Koletzko https://doi.org/10.1159/000177840
  9. Arterioscler. Thromb. Vasc. Biol. v.21 Replacement of dietary saturated fatty acids by trans fatty acids lowers serum HDL cholesterol and impairs endothelial function in healthy men and women de Roos, N. M.;M. L. Bots;M. B. Katan https://doi.org/10.1161/hq0701.092161
  10. Annu. Rec. Nutr. v.4 Nutrition and biochemistry of trans fatty acid isomers in hydrogenated oils Emken, E. A. https://doi.org/10.1146/annurev.nu.04.070184.002011
  11. Atherosclerosis v.115 Trans fatty acids and the composition of human aortic plaques Felton, C. V.;D. Crook;J. C. Stevenson
  12. J. Biol Chem v.223 A simple method for the isolation and purification of total lipids from animal tissue Folch, J.;M. Lees;S. H. S. Stanley
  13. Eur. J. Biochem. v.236 Alterations of lipoprotein fluidity by non-esterified fatty acids known to affect cholesteryl ester transfer protein activity. An electron spin resonance study Foucher, C.;L. Lagrost;M. Maupoil;L. Rochette;P. Gambert https://doi.org/10.1111/j.1432-1033.1996.00436.x
  14. J. Hypertension v.15 Liver microsomal membrane fluidity and microsomal desaturase activities in adult spontaneous hypertensive rats Foucher, C.;M. L. Narce;M. C. Nasr;Delachambre;J. P. Poisson https://doi.org/10.1097/00004872-199715080-00010
  15. Spin labeling theory and application Gaffney, B. J.
  16. J. Lipid Res. v.14 Simplified spectrophotometric assay for microsomal HMG-CoA reductase by measurement of coenzyme A Hulcher, H.;W. H. Oleson
  17. Methods in Enzymology v.156 Purification of $Na^+,\;K^+$-ATPase : enzyme sources preparative problems & preparation from mammalian kidney Jorgensen, P. L.;Fleischer S.(ed.);B. Fleischer(ed.)
  18. Am. J. Clin. Nutr. v.68 Effects of margarine compared with those of butter on blood lipid profiles related to cardiovascular disease risk factors in normolipemic adults fed controlled diets Judd, J. T.;D. J. Baer;B. A. Clevidence;R. A. Muesing;S. C. Chem;J. A. Wesrstrate;G. W. Meijer;J. Wittes;A. H. Lichtenstein;M. Vilella-Bach;E. J. Schaefer
  19. J. Nutr. v.128 Poor digestibility of fully hydrogenated soybean oil in rats : A potential Benefit of hydrogenated fats and oils Kaplan, R. J.;C. E. Greenwood
  20. Am. J. Clin. Nutr. v.34 Metabolism of trans fatty acids with emphasis on the effects of trans, trans- octadecadienoate on lipid composition, essential fatty acid, and protaglandins : an overview Kinsella, J. E.;G. Bruckner;J. Mari;J. Shimp
  21. Acta. Paediatr. v.81 Trans fatty acids may impair biosynthesis of long-chain polyunsaturateds and growth in man Kolezko, B. https://doi.org/10.1111/j.1651-2227.1992.tb12230.x
  22. Biochem. Biophys. Act. v.1124 Differential effects of cis and trans fatty acid isomers, oleic and elaidic acids, on the cholesteryl ester transfer protein activity Lagrost, L. L. https://doi.org/10.1016/0005-2760(92)90092-A
  23. Circulation. v.105 Cell membrane trans-fatty acids and the risk of primary cardiac arrest Lemaitre, R. N.;I. B. King;T. E. Raghhunathan;M. C. Copass;L. A. Cobb;D. S. Siscovick https://doi.org/10.1161/hc0602.103583
  24. J. Nutr. Biochem. v.9 Trans fatty acids and blood lipid levels, Lp(a), parameters of cholesterol metabolism, and hemostatic factors Lichtenstein, A. H. https://doi.org/10.1016/S0955-2863(98)00016-3
  25. Curr. Opin. Lipidol. v.11 Trans fatty acids and cardiovascular disease risk Lichtenstein, A. H. https://doi.org/10.1097/00041433-200002000-00006
  26. Atherosclerosis, Thrombosis, and Vascular Biology. v.13 Hydrogenation impairs the hypolipidemic effect of corn oil in humans. Hydrogenation, trans fatty acid, and plasma lipids Lichtenstein, A. H.;L. M. Ausman;W. Carrasco;J. L. Jenner(etc.) https://doi.org/10.1161/01.ATV.13.2.154
  27. J. Nutr. v.130 Incorporation and metabolism of dietary trans isomers of linolenic acid alter the fatty acid profile of fat tissues Loi, C.;J. M. Chardigny;S. Almanza;L. Leclere;C. Gini;J. L. Sebedio
  28. Lipids. v.34 Effects of dietary oils and cholesterol supplement on fluidity and enzyme activities of liver microsomes in the rat Lutz, M.;J. Alvarado;P. Barraza;S. Bonilla;L. Luna https://doi.org/10.1007/BF02562256
  29. N. Engl. J. Med. v.323 Effect of dietary trans fatty acids on high-density and low-density lipoprotein cholesterol levels in healthy subjects Mensink, R. P.;M. B. Katan https://doi.org/10.1056/NEJM199008163230703
  30. J. Lipids Res. v.33 Effect of dietary cis and trans fatty acids on serum lipoprotein(a) levels in humans Mensink, R. P.;P. L. Zock;M. B. Katan;G. Hornstra
  31. Annals of Nutr. & Meta. v.43 Effect of dietary hydrogenated fish oil on the plasma lipoprotein profile and on the fatty acid composition of different tissues of rat Morgado, N.;J. Sanhueza;A. Galleguillos(etc.) https://doi.org/10.1159/000012799
  32. J. Lipids Res. v.33 Plasma lipiprotein lipid and Lp(a) changes with substitution of elaidic acid for oleic acid in the diet Nestel, P.;M. Noakes;B. Belling;R. McArthur;P. Clifton;E. James;M. Abbey
  33. Lipids v.20 Effect of dietary trans fatty acids on microsomal enzymes and membranes. Ostlund-Lindquist, A. M.;I. Albanus;I. B. Croon. https://doi.org/10.1007/BF02534289
  34. J. Lipids Res. v.39 Trans unsaturated fatty acids inhibit lecithin : cholesterol acyltransferase and alter its positional specificity Papasani, V. S.;S. S. Veedamali;L. Mig
  35. Am. J. Clin. Nutr. v.39 Influence of dietary isomeric and saturated fatty acids on atherosclerosis and eicosanoid synthesis in swine Royce, S. M.;P. P. Holme;T. Takagi;F. A. Kummerow
  36. Anal. Boichem. v.142 A sensitive enzymatic assay for determination of cholesterol in lipid extract Sale, F. O.;S. Marchesini;P. H. Fishman;B. Berra https://doi.org/10.1016/0003-2697(84)90475-5
  37. Biochem. Biophys. Acta. v.370 3-Hydroxy-3-methyl glutaryl coenzyme A reductase in rat liver and in L-cell fibroblasts Shapiro, D. J.;J. L. Nordstrom;V. W. Rodwell;J. J. Mitschelen
  38. Am. J. Clin. Nutr. v.66 no.s Do trans fatty acids increase the risk of coronary artery disease? A critique of the epidemiologic evidence Shapiro, S.
  39. J. Nutr. v.127 Trans (elaidic) fatty acids adversely affect the lipoprotein profile relative to specific saturated fatty acids in humans Sundram, K.;A. K. C. Ismail;R. Kayes;Jeyamalar;R. Pathmanathan
  40. Clin. Exp. Pharmacol. Physiol. v.19 Membrane fluidity as a genetic marker of hypertension Tsuda, K.;Y. Ueno;I. Nishio;Y. Masuyama
  41. Am. J. Clin. Nutr. v.42 Influence of dietary cis- and trans-fat on 1,2-dimethylhydrazine-induced colon tumors and fecal steroid excretion in Fischer 344 rats Watanabe, M.;T. Koga;M. Sugano
  42. Am. J. Public Health v.84 Trans fatty acids : are the effects only marginal Willett, W. C.;A. Ascherio https://doi.org/10.2105/AJPH.84.5.722
  43. J. Lipid Res. v.34 Effect of butter, mono- and polyun-saturated fatty acid-enriched butter, trans fatty acid margarine, and zero trans fatty acid margarine on serum lipids and lipoproteins in healthy men Wood, R.;K. Kubena;B. O'Brien;S. Tseng;G. Martin
  44. Am. J. Clin. Nutr. v.61 Plasma cholesterol-predictive equations demonstrate that steraic acid is neutral and monounsaturated fatty acids are hypocholesterolemic Yu, S.;J. Derr;T. D. Etherton;P. M. Kris-Etherton
  45. Atherosclerosis v.131 Butter, margarine and serum lipoproteins Zock, P. L.;M. B. Katan https://doi.org/10.1016/S0021-9150(96)06063-7
  46. Arterioscler. Thromb. v.14 Impact of myristic acid versus palmitic acid on serum lipid and lipoprotein levels in healthy women and men. Zock, P. L.;J. H. M. de Vries;M. B. Katan https://doi.org/10.1161/01.ATV.14.4.567

Cited by

  1. Effects of photosensitisation and autoxidation on the changes of volatile compounds and headspace oxygen in elaidic trans fatty acid and oleic cis fatty acid vol.119, pp.1, 2010, https://doi.org/10.1016/j.foodchem.2009.05.077