The Effect of Ethanol on the Physical Properties of Neuronal Membranes

  • Bae, Moon-Kyoung (Department of Oral Physiology and Molecular Biology, College of Dentistry and Research Institute for Oral Biotechnology, Pusan National University) ;
  • Jeong, Dong-Keun (Department of Dental Pharmacology and Biophysics, College of Dentistry and Research Institute for Oral Biotechnology, Pusan National University) ;
  • Park, No-Soo (Department of Dental Pharmacology and Biophysics, College of Dentistry and Research Institute for Oral Biotechnology, Pusan National University) ;
  • Lee, Cheol-Ho (Department of Dental Pharmacology and Biophysics, College of Dentistry and Research Institute for Oral Biotechnology, Pusan National University) ;
  • Cho, Bong-Hye (Department of Oral and Maxillofacial Radiology, College of Dentistry, Pusan National University) ;
  • Jang, Hye-Ock (Department of Dental Pharmacology and Biophysics, College of Dentistry and Research Institute for Oral Biotechnology, Pusan National University) ;
  • Yun, Il (Department of Dental Pharmacology and Biophysics, College of Dentistry and Research Institute for Oral Biotechnology, Pusan National University)
  • Received : 2005.01.03
  • Accepted : 2005.01.31
  • Published : 2005.06.30

Abstract

Intramolecular excimer formation of 1,3-di(1-pyrenyl) propane(Py-3-Py) and fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH) were used to evaluate the effect of ethanol on the rate and range of lateral and rotational mobilities of bulk bilayer structures of synaptosomal plasma membrane vesicles (SPMVs) from the bovine cerebral cortex. Ethanol increased the excimer to monomer fluorescence intensity ratio (I'/I) of Py-3-Py in the SPMVs. Selective quenching of both DPH and Py-3-Py by trinitrophenyl groups was used to examine the range of transbilayer asymmetric rotational mobility and the rate and range of transbilayer asymmetric lateral mobility of SPMVs. Ethanol increased the rotational and lateral mobility of the outer monolayer more than of the inner one. Thus ethanol has a selective fluidizing effect within the transbilayer domains of the SPMVs. Radiationless energy transfer from the tryptophans of membrane proteins to Py-3-Py was used to examine both the effect of ethanol on annular lipid fluidity and protein distribution in the SPMVs. Ethanol increased annular lipid fluidity and also caused membrane proteins to cluster. These effects on neuronal membranes may be responsible for some, though not all, of the general anesthetic actions of ethanol.

Keywords

References

  1. Armbrecht, H. J., Wood, W. G., Wise, R. W., Walsh, J. B., Thomas, B. N., et al. (1983) Ethanol-induced disordering of membranes from different age groups of C57BL/6NNIA mice. J. Pharmacol. Exp. Ther. 226, 387-391
  2. Bangham, A. D. and Mason, W. (1979) The effect of some general anesthetics on the surface potential of lipid monolayers. Br. J. Pharmacol. 66, 259-265 https://doi.org/10.1111/j.1476-5381.1979.tb13674.x
  3. Brasaemle, D. L., Robertson, A. D., and Attie, A. D. (1988) Transbilayer movement of cholesterol in the human erythrocyte membrane. J. Lipid Res. 29, 481-489
  4. Chabanel, A., Abbott, R. E., Chien, S., and Schachter, D. (1985) Effects of benzyl alcohol on erythrocyte shape, membrane hemileaflet fluidity and membrane viscoelasticity. Biochim. Biophys. Acta 816, 142-152 https://doi.org/10.1016/0005-2736(85)90402-X
  5. Chin, J. H. and Goldstein, D. B. (1977a) Effects of low concentrations of ethanol on the fluidity of spin-labeled erythrocyte and brain membranes. Mol. Pharmacol. 13, 435-441
  6. Chin, J. H. and Goldstein, D. B. (1977b) Drug tolerance in biomembranes: a spin label study of the effects of ethanol. Science 196, 684-685 https://doi.org/10.1126/science.193186
  7. Chin, J. H. and Goldstein, D. B. (1981) Membrane-disordering action of ethanol: variation with membrane cholesterol content and depth of the spin label probe. Mol. Pharmacol. 19, 425-431
  8. Chin, J. H. and Goldstein, D. B. (1984) Cholesterol blocks the disordering effects of ethanol in biomembranes. Lipids 19, 929-935 https://doi.org/10.1007/BF02534728
  9. Cogan, U. and Schachter, D. (1981) Asymmetry of lipid dynamics in human erythrocyte membranes studied with impermeant fluorophores. Biochemistry 20, 6396-6403 https://doi.org/10.1021/bi00525a018
  10. Curry, S., Lieb, W. R., and Franks, N. P. (1990) Effects of general anesthetics on the bacterial luciferase enzyme from Vibrio harveyi: an anesthetic target site with differential sensitivity. Biochemistry 29, 4641-4652 https://doi.org/10.1021/bi00471a020
  11. Curtain, C. C., Gordon, L. M., and Aloia, R. C. (1988) The role of cholesterol in regulating membrane fluidity; in Advances in Membrane Fluidity, Aloia, R. L., Curtain, C. C., and Gofron, L. M. (eds.), Vol. 2, pp. 1-15, Alan R Liss, New York
  12. Dicknson, R., Smith, E. H., Franks, N. P., and Lieb, W. R. (1993a) Synthesis and use of the n-bromododecane-1,12- diols as conformational probes for general anesthetic target sites. J. Med. Chem. 36, 111-118 https://doi.org/10.1021/jm00053a014
  13. Dicknson, R., Franks, N. P., and Lieb, W. R. (1993b) Thermodynamics of anesthetics/protein interactions. Temperature studies on firefly luciferase. Biophys. J. 64, 1264-1271 https://doi.org/10.1016/S0006-3495(93)81491-7
  14. Dobretsov, G. E., Spirin, M. M., Chekrygin, O. V., Karamansky, I. M., Dmitriev, V. M., et al. (1982) A fluorescence study of apolipoprotein localization in relation to lipids in serum low density lipoproteins. Biochim. Biophys. Acta 710, 172-180 https://doi.org/10.1016/0005-2760(82)90147-3
  15. Franks, N. P. and Lieb, W. R. (1985) Mapping of general anesthetic target sites provides a molecular basis for cutoff effects. Nature 316, 349-351 https://doi.org/10.1038/316349a0
  16. Franks, N. P. and Lieb, W. R. (1987) Neuron membranes: anesthetics on the mind. Nature 328, 113-114 https://doi.org/10.1038/328113a0
  17. Franks, N. P. and Lieb, W. R. (1993) Do general anesthetics act by competitive binding to specific receptors? Nature 310, 599-601 https://doi.org/10.1038/310599a0
  18. Franks, N. P. and Lieb, W. R. (1994) Molecular and cellular mechanisms of general anesthesia. Nature 367, 607-614 https://doi.org/10.1038/367607a0
  19. Goldstein, D. B. and Chin, J. H. (1981) Interaction of ethanol with biological membranes. Fed. Proc. 40, 2073-2076
  20. Gonzales, R. A. and Hoffman, P. L. (1991) Receptor-gated ion channels may be selective CNS targets for ethanol. Trends Pharmacol. Sci. 12, 1-3 https://doi.org/10.1016/0165-6147(91)90478-B
  21. Jang, H. O., Jeong, D. K., Ahn, S. H., Yoon, C. D., Jeong, S. C., et al. (2004a) Effects of chlorpromazine HCl on the structural parameters of bovine brain membranes. J. Biochem. Mol. Biol. 37, 603-611 https://doi.org/10.5483/BMBRep.2004.37.5.603
  22. Jang, H. O., Shin, H. G., and Yun, I. (2004b) Effects of dimyristoylphosphatidylethanol on the structural parameters of neuronal membrane. Mol. Cells 17, 485-491
  23. Janoff, A. S., Boni, L. T., and Rauch, J. (1988) Phase-defined domain in biological membranes: a perspective; in Advanes in Membrane Fluidity, Aloia, R. C., Curtain, C. C., and Gordon, L. M. (eds.), Vol. 2, pp. 101-109, Alan R. Liss, New York
  24. Kang, J.-S., Choi, Ch.-M., and Yun, I. (1996) Effects of ethanol on lateral and rotational mobility of plasma membrane vesicles isolated from cultured mouse myeloma cell line Sp2/0-Ag14. Biochim. Biophys. Acta 1281, 157-163 https://doi.org/10.1016/0005-2736(95)00301-0
  25. Kier, A. B., Sweet, W. D., Cowlen, M. S., and Schroeder, F. (1986) Regulation of transbilayer distribution of a fluorescent sterol in tumor cell plasma membranes. Biochim. Biophys. Acta 861, 287-301
  26. Kirsch, P., Hafner, M., Zentgraf, H., and Schilling, L. (2003) Time course of fluorescence intensity and protein expression in HeLa cells stably transfected with hrGFP. Mol. Cells 15, 341-348
  27. Lowry, O. H., Rosebrough, N. R., Farr, A. L., and Randall, R. J. (1951) Protein measurement with the Folin reagent. J. Biol. Chem. 193, 265-275
  28. Manevich, E. M., Koiv, A., Jarv, J., Molotkovsky, J. G., and Bergelson, L. D. (1988) Binding of specific ligands to muscarinic receptors alters the fluidity of membrane fragments from rat brain. A fluorescence polarization study with lipidspecific probes. FEBS Lett. 236, 43-46 https://doi.org/10.1016/0014-5793(88)80282-5
  29. Moss, G. W. J., Franks, N. P., and Lieb, W. R. (1991a) Modulation of the general anesthetic sensitivity of a protein: a transition between two forms of firefly luciferase. Proc. Natl. Acad. Sci. USA 88, 134-138
  30. Moss, G. W. J., Lieb, W. R., and Franks, N. P. (1991b) Anesthetic inhibition of firefly luciferase, a protein model for general anesthesia, does not exhibit pressure reversal. Biophys. J. 60, 1309-1314 https://doi.org/10.1016/S0006-3495(91)82168-3
  31. Sanna, E., Concas, A., Serra, M., Santoro, G., and Biggio, G. (1991) Ex vivo binding of t-[35S]butylbicyclophosphorothionate: a biochemical tool to study the pharmacology of ethanol at the gamma-aminobutyric acid-coupled chloride channel. J. Pharmacol. Exp. Ther. 256, 922-928
  32. Schachter, D. (1984) Fluidity and function of hepatocyte plasma membranes. Hepatology 4, 140-151 https://doi.org/10.1002/hep.1840040124
  33. Schachter, D., Abbott, R. E., Cogan, U., and Flamm, M. (1983) Lipid fluidity of the individual hemileaflets of human erythrocyte membranes. Ann. N. Y. Acad. Sci. 414, 19-28 https://doi.org/10.1111/j.1749-6632.1983.tb31671.x
  34. Schroeder, F., Morrison, W. J., Gorka, C., and Wood, W. G. (1988) Transbilayer effects of ethanol on fluidity of brain membranes leaflets. Biochim. Biophys. Acta 946, 85-94 https://doi.org/10.1016/0005-2736(88)90460-9
  35. Schroeder, F., Nemecz, G., Wood, W. G., Joiner, C., Morrot, G., et al. (1991) Transmembrane distribution of sterol in the human erythrocyte. Biochim. Biophys. Acta 1066, 183-192 https://doi.org/10.1016/0005-2736(91)90185-B
  36. Seigneuret, M., Zachowski, A., Hermann, A., and Devaux, P. F. (1984) Asymmetric lipid fluidity in human erythrocyte membrane: new spin-label evidence. Biochemistry 23, 4271-4275 https://doi.org/10.1021/bi00314a002
  37. Stubbs, C. D. and Williams, B. W. (1992) Fluorescence in membranes; in Fluorescence Spectroscopy in Biochemistry, Lakowicz, J. R. (ed.). Vol. 3, pp. 231-263, Plenum Press, New York
  38. Wood, W. G., Gorka, C., and Schroeder, F. (1989) Acute and chronic effects of ethanol on transbilayer membrane domains. J. Neurochem. 52, 1925-1930 https://doi.org/10.1111/j.1471-4159.1989.tb07278.x
  39. Wood, W. G., Schroeder, F., Hogy, L., Rao, A. M., and Nemecz, G. (1990) Asymmetric distribution of a fluorescent sterol in synaptic plasma membranes: effects of chronic ethanol consumption. Biochim. Biophys. Acta 1025, 243-246 https://doi.org/10.1016/0005-2736(90)90103-U
  40. Yun, I. and Kang, J.-S. (1990) The general lipid composition and aminophospholipid asymmetry of synaptosomal plasma membrane vesicles isolated from bovine cerebral cortex. Mol. Cells 1, 15-20
  41. Yun, I., Kim, Y.-S., Yu, S.-H., Chung, I.-K., Kim, I.-S., et al. (1990) Comparison of several procedures for the preparation of synaptosomal plasma membrane vesicles. Arch. Pharm. Res. 13, 325-329 https://doi.org/10.1007/BF02858167
  42. Yun, I., Yang, M.-S., Kim, I.-S., and Kang, J.-S. (1993) Bulk vs. transbilayer effects of ethanol on the fluidity of the plasma membrane vesicles of cultured Chinese hamster ovary cells. Asia Pacific J. Pharmacol. 8, 9-16
  43. Yun, I., Lee, S.-H., and Kang, J.-S. (1994) Effects of ethanol on lateral and rotational mobility of plasma membrane vesicles isolated from cultured Mar 18.5 hybridoma cells. J. Membr. Biol. 138, 221-227
  44. Zachariasse, K. A., Vaz, W. L. C., Stomayer, C., and Kuhnle, W. (1982) Investigation of human erythrocyte ghost membranes with intramolecular excimer probes. Biochim. Biophys. Acta 688, 323-332 https://doi.org/10.1016/0005-2736(82)90343-1