• Title/Summary/Keyword: 6 DOF manipulator

Search Result 83, Processing Time 0.03 seconds

Roll Replacing Robot Systems for Wire-rod Press Roll (선재 압연 롤 교체 로봇 시스템)

  • Jin, Mao-Lin;You, Ki-Sung;Ryu, Hwang-Ryol;Choi, Chin-Tae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.7
    • /
    • pp.647-650
    • /
    • 2011
  • This paper presents the development of roll replacement robot system for wire-rod press rolls. The roll replacement robot system consist of a palletized railway truck, a 6-DOF industrial robot manipulator, a roll changing tool and a hydraulic power system. Results of simulation and pilot experiment show the roll changing task can be successfully automated using proposed robot system.

Precise Measurement Method of Radial Artery Pulse Waveform using Robotic Applanation Tonometry Sensor (로보틱 토노메트리 센서를 이용한 요골 동맥 파형 정밀 측정 방법)

  • Kim, Young-Min
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.135-140
    • /
    • 2017
  • In this paper, a novel measurement method of radial artery pulse waveform using robotic applanation tonometry (RAT) was present to reduce the errors by the pressing direction of the vessel. The RAT consisted of an array of pressure sensors and 2-axis tilt sensor, which was attached to the universal joint with a linear spring and five-DOF robotic manipulator with a one-axis force sensor. Using the RAT mechanism, the pulse sensor could be manipulated to perpendicularly pressurize the radial artery. A pilot experimental result showed that the proposed mechanism could find the optimal pressurization angles of the pulse sensor within ${\pm}3^{\circ}$standard deviations. Coefficient values of variation of maximum pulse peaks extracted from the pulse waveforms were 4.692, 6.994, and 11.039 % for three channels with the highest magnitudes. It is expected that the proposed method can be helpful to develop more precise tonometry system measuring the pulse waveform on the radial artery.

A Study on the Multi-Purpose Rehabilitation System for the Upper Limb Using a Robot Manipulator (로봇을 이용한 다기능 상지 재활 시스템에 관한 연구)

  • 원주연;심형준;박범석;한창수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.11
    • /
    • pp.171-179
    • /
    • 2003
  • This paper presents a rehabilitation exercise system which utilizes a 6 DOF robot as a motion generator. This system was proposed for a stroke patient or a patient who has hemiplegia. A master-slave system was designed to exercise either paralysis or abnormal limb by using normal limb motion. The study on the human body was applied to calculate the motion range of elbows and shoulders. In addition, a force-torque sensor was applied to the slave robot to estimate the rehabilitation extent of the patient. Therefore, the stability of the rehabilitation robot could be improved. By using the rehabilitation robot. the patients could exercise by themselves without assistance. In conclusion, the proposed system was verified by computer simulations and system experiment.

A Study on the Orientation of a High-Precision Stewart Platform (고정밀 병렬평행기구의 자세제어에 관한 연구)

  • Cha, Young-Youp;Jeong, Se-Mi
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1944-1946
    • /
    • 2008
  • This paper analyzed orientation simulation of Stewart platform which is a parallel manipulator of 6-DOF. When platform shape had been given, inverse kinematics as the problem about length of actuator could get an answer using a vector function simply, and forward kinematics as the problem solving shape of platform through the length of actuator could get answer using repetitive and manual explaining Newton-Raphson method because it is expressed a high nonlinear polynomial expression. In addition, for control the Stewart platform it could drive simply and it could confirm the state of orientation in real-time.

  • PDF

Hybrid position/force control of uncertain robotic systems using neural networks (신경회로망을 이용한 불확실한 로봇 시스템의 하이브리드 위치/힘 제어)

  • Kim, Seong-U;Lee, Ju-Jang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.3
    • /
    • pp.252-258
    • /
    • 1997
  • This paper presents neural networks for hybrid position/force control which is a type of position and force control for robot manipulators. The performance of conventional hybrid position/force control is excellent in the case of the exactly-known dynamic model of the robot, but degrades seriously as the uncertainty of the model increases. Hence, the neural network control scheme is presented here to overcome such shortcoming. The introduced neural term is designed to learn the uncertainty of the robot, and to control the robot through uncertainty compensation. Further more, the learning rule of the neural network is derived and is shown to be effective in the sense that it requires neither desired output of the network nor error back propagation through the plant. The proposed scheme is verified through the simulation of hybrid position/force control of a 6-dof robot manipulator.

  • PDF

Autonomous Driving System in Library using 6 Dof Manipulator based on Deeplearning (딥러닝, 로봇팔을 이용한 도서관 자율주행 시스템)

  • Chang-Min Lee;Yu-Seok Shin;Do-Hyeon Kim;Hyeon-Min Jo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.809-810
    • /
    • 2023
  • 도서관 자동화 시스템 개발로 이용자가 책을 직접 찾지 않고, 대출하고자 하는 책을 PC에 입력하면 자율주행으로 책이 있는 서가로 이동, 딥러닝 기반의 로봇팔로 책을 잡고 기존 위치로 복귀하여 자동으로 대출과 운반이 가능한 로봇의 시스템을 제안한다.

Dynamics and Control of 6-DOF Shaking Table with Bell Crank Structure

  • Jeon, Duek-Jae;Park, Sung-Ho;Park, Young-Jin;Park, Youn-Sik;Kim, Hyoung-Eui;Park, Jong-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.296-301
    • /
    • 2005
  • This paper describes the kinematics, dynamics and control of a 6-DOF shaking table with a bell crank structure, which converts the direction of reciprocating movements. In this shaking table, the bell crank mechanism is used to reduce the amount of space needed to install the shaking table and create horizontal displacement of the platform. In kinematics, joint design is performed using $Gr{\ddot{u}}bler's$ formula. The inverse kinematics of the shaking table is discussed. The derivation of the Jacobian matrix is presented to evaluate singularity conditions. Considering the maximum stroke of the hydraulic actuator, collision between links and singularity, workspace is computed. In dynamics, computations are based on the Newton-Euler formulation. To derive parallel algorithms, each of the contact forces is decomposed into one acting in the direction of the leg and the other acting in the plane orthogonal to the direction of the leg. Applying the Newton-Euler approach, the solution of inverse dynamics is almost completely parallel. Only one of the steps-the application of the Newton-Euler equations to the platform-must be performed on one single processor. Finally, the efficient control scheme is proposed for the tracking control of the motion platform.

  • PDF

Impedance-Control Based Peg-in-Hole Assembly with a 6 DOF Manipulator (6축 머니퓰레이터를 이용한 임피던스 제어 기반의 원형 펙 조립)

  • Kim, Byeong-Sang;Kim, Young-Loul;Song, Jae-Bok;Son, Seung-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.4
    • /
    • pp.347-352
    • /
    • 2011
  • The maximum accuracy of position control by using an industrial robot is about $100{\mu}m$, whereas the maximum tolerated imprecision in the position of precision parts is about several tens of micrometers. Therefore, it is very difficult to assemble parts by position control only. Moreover, in the case of precision assembly, jamming or wedging can easily occur because of small position/orientation errors, which may damage the parts to be assembled. To overcome these problems, we investigated a force control scheme that provides proper motion in response to the contact force. In this study, we constructed a force control system that can be easily implemented in a position-controlled manipulator. Impedance control by using an admittance filter was adopted to perform stable contact tasks. It is shown that the precision parts can be assembled well by adopting impedance control and blind search methods.

Development of a Noncontacting 6 DOF Micro-Postioner Driven by Magnetic Force-Design, Modeling and Control- (자기력을 이용한 비접촉 6자유도 미소위치결정 기구의 개발-설계, 모델링 및 제어-)

  • Choi, Kee-Bong;Park, Kyi-Hwan;Kim, Soo-Hyun;Kwak, Yoon-Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.4
    • /
    • pp.1164-1176
    • /
    • 1996
  • A magnetically levitated micro-positioner is implemented to avoid mechanical friction and increase precision. Since magnetic levitation system is inherently unstable, most concern is focused on a magnetic circuit design to increase the system dynamic stability. For this, the proposed levitation system is constructed by using an antagonistic structure which permits a simple design and robust stability. From the dynamic equations of motion, it is verified that the proposed magnetically levitated system is decoupled in 6 degree-of-freedom motion. Experimental results are presented in terms of time response and accuracy.

A Study on Real Time Working Path Control of Vertical Articulated Robot for Forging Process Automation in High Temperature Environments (고온 환경 단조공정 자동화를 위한 수직다관절 로봇의 실시간 작업경로 제어에 관한 연구)

  • Jo, Sang-Young;Kim, Min-Seong;Do, Ki-Hoon;Han, Sung-Hyun;Ha, Un-Tae;Shim, Hyun-Suk;Lim, Chang-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.1
    • /
    • pp.34-48
    • /
    • 2017
  • This study proposes a new approach to control a trajectory control of vertical type articulated robot arm with six revolution joints by computed torque method for manufacturing process automation. The proposed control scheme takes advantage of the properties of the fuzzy controllers. The proposed method is suitable to control of the trajectory and path control in cartesian space for vertical type articulated robot manipulator for forging manufacturing process automation. The results is illustrated that the proposed fuzzy computed torque controller is more stable and robust than the conventional computed torque controller. This study is included with an analytical methodology of inverse kinematic computation for 6 DOF manipulators. And an intelligent PID based on feed forward fuzzy control structure is applied to control the working path control with disturbances caused by uncertainty parameters of the manipulator dynamic model. Lastly, the validity of proposed is verified by simulations and experiments.