†. *

A Study on the Orientation of a High-Precision Stewart Platform

Young-Youp Cha, Se-Mi Jeong

Key Words: Parallel mechanism()

Abstract

This paper analyzed orientation simulation of Stewart platform which is a parallel manipulator of 6-DOF. When platform shape had been given, inverse kinematics as the problem about length of actuator could get an answer using a vector function simply, and forward kinematics as the problem solving shape of platform through the length of actuator could get answer using repetitive and manual explaining Newton-Raphson method because it is expressed a high nonlinear polynomial expression. In addition, for control the Stewart platform it could drive simply and it could confirm the state of orientation in real-time.

		(2)	(neural network)		g
1.		•	X, Y, Z	Simulation	Stewart .
Stewart platform $^{(1,2,3)}$.		2. Stewart platform			
가 .		Stewart	platform .	6	
, , 	Newton-		,		,
Raphson ,			·		3 . Fig.
		1 Stewart platform			
		Fig. 2	Stewart platforn	n	
				B_{xyz}	
† E-mail: ggypcha@wonkwang.ac.kr TEL: (063)850-6693 FAX: (063)850-6691 *		(base	coordinate system	n) ,	
	1		P_{xyz}		(platform
	I	coordinate			
		3	3	•	

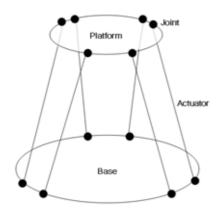


Fig. 1 A form of Stewart platform

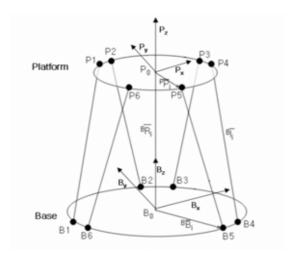


Fig. 2 Coordinate system of Stewart platform

x, y, z

, $x,\,y,\,z$ ${\rm Roll}(\gamma),\ {\rm Pitch}(\beta),\ {\rm Yaw}(\alpha)$



Fig. 3 Link length according to Z-axis rotating motion

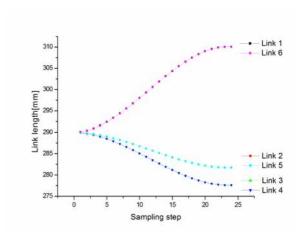


Fig. 4 Link length according to Y-axis rotating motion

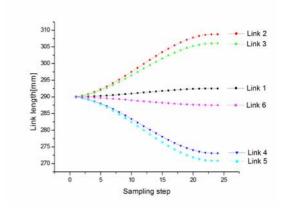


Fig. 5 Link length according to X-axis rotating motion

3. Simulation

10 ° Fig. 3 Z 가 2, 4, 6 1, 3, 5 . Fig. 4 10 ° Y 가 1, 6 2, 5 3, 4 10 ° . Fig. 5 X 가 . 2, 3, 1 , 6, 4, 5 가 4.

Stewart

- [1] Kai, L., John, M., and Frank, L., 1993, "Kinematic Analysis of a Stewart Platform Manipulator," *IEEE Transactions on Industrial, Electronics*, 40, pp.282-293.
- [2] Sadjadian, H., Taghirad, H.D., and Fathhi, A., 2005, "Neural Network Approaches for Computing the Forward Kinematics of Redundant Parallel Manipulator," *International Journal of Computational Intelligence*, 2, pp.40-47.
- [3] Der-Ming, K., 1999, "Direct displacement analysis of a Stewart platform mechanism," *Mechanism and Machine Theory*, 34, pp.453-465.