• Title/Summary/Keyword: 50nm

Search Result 2,603, Processing Time 0.035 seconds

Numerical Analysis of the Wavelength Dependence in Low Level Laser Therapy (LLLT) Using a Finite Element Method

  • Yoon, Jin-Hee;Park, Ji-Won;Youn, Jong-In
    • The Journal of Korean Physical Therapy
    • /
    • v.22 no.6
    • /
    • pp.77-83
    • /
    • 2010
  • Purpose: The aim of this study was to do numerical analysis of the wavelength dependence in low level laser therapy (LLLT) using a finite element method (FEM). Methods: Numerical analysis of heat transfer based on a Pennes' bioheat equation was performed to assess the wavelength dependence of effects of LLLT in a single layer and in multilayered tissue that consists of skin, fat and muscle. The three different wavelengths selected, 660 nm, 830 nm and 980 nm, were ones that are frequently used in clinic settings for the therapy of musculoskeletal disorders. Laser parameters were set to the power density of 35.7 W/$cm^2$, a spot diameter of 0.06 cm, and a laser exposure time of 50 seconds for all wavelengths. Results: Temperature changes in tissue based on a heat transfer equation using a finite element method were simulated and were dominantly dependent upon the absorption coefficient of each tissue layer. In the analysis of a single tissue layer, heat generation by fixed laser exposure at each wavelength had a similar pattern for increasing temperature in both skin and fat (980 nm > 660 nm > 830 nm), but in the muscle layer 660nm generated the most heat (660 nm ${\gg}$ 980 nm > 830 nm). The heat generation in multilayered tissue versus penetration depth was shown that the temperature of 660 nm wavelength was higher than those of 830 nm and 980 nm Conclusion: Numerical analysis of heat transfer versus penetration depth using a finite element method showed that the greatest amount of heat generation is seen in multilayered tissue at = 660 nm. Numerical analysis of heat transfer may help lend insight into thermal events occurring inside tissue layers during low level laser therapy.

Electrical Properties of Organic Photovoltaic Cell using CuPc/$C_{60}$ double layer (CuPc/$C_{60}$ 이중층을 이용한 유기 광기전 소자의 전기적 특성)

  • Lee, Dong-Shin;Park, Yong-Pil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.744-746
    • /
    • 2008
  • Organic photovoltaic effects were studied in a device structure of ITO/CuPc/Al and ITO/CuPc/$C_{60}$/BCP/Al. A thickness of CuPc layer was varied from 10 nm to 50 nm, we have obtained that the optimum CuPc layer thickness is around 40 nm from the analysis of the current density-voltage characteristics in CuPc single layer photovoltaic cell. From the thickness-dependent photovoltaic effects in CuPc/$Cu_{60}$ heterojunction devices, higher power conversion efficiency was obtained in ITO/20nm CuPc/40nm $C_{60}$/Al, which has a thickness ratio (CuPc:$C_{60}$) of 1:2 rather than 1:1 or 1:3. Light intensity on the device was measured by calibrated Si-photodiode and radiometer/photometer of International Light Inc(IL14004).

  • PDF

The Effect of Quinolate Metal Complex as an Electron Injection Layers on the Performance of Organic Light Emitting Devices (유기 전기 발광 소자의 전자 주입층)

  • Choi, Kyung-Hoon;Sohn, Byung-Chung;Kim, Young-Kwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.980-983
    • /
    • 2002
  • We investigated the effect of quinolate metal complex layer as an electron injection layer on the performance of OLEDs and optimized the device efficiency by varying from 0.5 to 10nm thickness of Liq layer. OLED with a structure of indium tin oxide/$\alpha$-napthylphenylbiphenyl(NPB,40nm)/tris-(8-hydroxyquinoline)aluminum(Alq3, 50nm)/Aluminum(150nm) were fabricated in sequence. The device with 1nm Quinolate metal complex layer showed significant enhancement of the device performance.

  • PDF

블록 공중합체 박막을 이용한 금 나노점 및 실리콘 나노점의 형성

  • Gang, Gil-Beom;Lee, Chang-U;Kim, Yong-Tae;Kim, Seong-Il
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2007.06a
    • /
    • pp.90-93
    • /
    • 2007
  • 밀도가 높고 주기적으로 배열된 실리콘 나노점이 실리콘 기판위에 형성 되었다. 실리콘 나노점을 형성하기 위해 사용된 나노패턴의 지름은 20 나노미터(nm)이고 깊이는 40 nm 이었으며 기공과 기공사이의 거리는 50 nm 였다. 나노미터 크기의 패턴을 형성시키기 위해서 자기조립물질을 사용했으며 폴리스티렌(PS) 바탕에 벌집형태로 평행하게 배열된 실린더 모양의 폴리메틸메타아크릴레이트(PMMA)의 구조를 형성하였다 폴리메틸메타아크릴레이트를 아세트산으로 제거하여 폴리스티렌만 남아있는 나노크기의 마스크를 만들었다. 형성된 나노패턴에 전자빔 기상증착장치를 사용하여 금 박막을 $100\;{\AA}$ 증착하고 리프트오프(lift-off) 방식으로 금 나노점을 만들었다. 형성된 금 나노점을 불소기반의 화학반응성 식각법을 이용하여 식각하고 황산으로 제거하였다. 형성된 실리콘 나노점의 지름은 24 nm 였고 높이는 20 nm 였다.

  • PDF

1/f Noise Characteristics of Sub-100 nm MOS Transistors

  • Lee, Jeong-Hyun;Kim, Sang-Yun;Cho, Il-Hyun;Hwang, Sung-Bo;Lee, Jong-Ho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.1
    • /
    • pp.38-42
    • /
    • 2006
  • We report 1/f noise PSD(Power Spectrum Density) of sub-100 nm MOSFETs as a function of various parameters such as HCS (Hot Carrier Stress), bias condition, temperature, device size and types of MOSFETs. The noise spectra of sub-100 nm devices showed Lorentzian-like noise spectra. We could check roughly the position of a dominant noise source by changing $V_{DS}$. With increasing measurement temperature, the 1/f noise PSD of 50 nm PMOS device decreases, but there is no decrease in the noise of NMOS device. RTN (Random Telegraph Noise) was measured from the device that shows clearly a Lorentzian-like noise spectrum in 1/f noise spectrum.

Electrical Properties of Organic Photovoltaic Cell using CuPc (CuPc를 이용한 유기 광기전 소자의 전기적 특성)

  • Lee, Ho-Shik;Park, Yong-Pil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.612-614
    • /
    • 2008
  • Organic photovoltaic effects were studied in a device structure of ITO/CuPc/Al and ITO/CuPc/$C_{60}$/BCP/Al. A thickness of CuPc layer was varied from 10nm to 50nm, we have obtained that the optimum CuPc layer thickness is around 40nm from the analysis of the current density-voltage characteristics in CuPc single layer photovoltaic cell. From the thickness-dependent photovoltaic effects in CuPc/$C_{60}$ heterojunction devices, higher power conversion efficiency was obtained in ITO/20nm CuPc/40nm $C_{60}$/Al, which has a thickness ratio (CuPc:$C_{60}$) of 1:2 rather than 1:1 or 1:3. Light intensity on the device was measured by calibrated Si-photodiode and radiometer/photometer of International Light Inc(IL14004).

  • PDF

ONO 구조의 nc-si NVM의 전기적 특성

  • Baek, Gyeong-Hyeon;Jeong, Seong-Uk;Jang, Gyeong-Su;Yu, Gyeong-Yeol;An, Si-Hyeon;Lee, Jun-Sin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.136-136
    • /
    • 2011
  • 반도체 및 전자기기 산업에 있어서 NVM은 아주 중요한 부분을 차지하고 있다. NVM은 디스플레이 분야에 많은 기여를 하고 있는데, 측히 AMOLED에 적용이 가능하여 온도에 따라 변하는 구동 전류, 휘도, color balance에 따른 문제를 해결하는데 큰 역할을 한다. 본 연구에서는 bottom gate 구조의 nc-Si NVM 실험을 진행하였다. P-type silicon substrate (0.01~0.02 ${\Omega}-cm$) 위에 Blocking layer 층인 SiO2 (SiH4:N2O=6:30)를 12.5nm증착하였고, Charge trap layer 층인 SiNx (SiH4:NH3=6:4)를 20 nm 증착하였다. 마지막으로 Tunneling layer 층인 SiOxNy은 N2O (2.5 sccm) 플라즈마 처리를 통해 2.5 nm 증착하였다. 이러한 ONO 구조층 위에 nc-Si을 50 nm 증착후에 Source와 Drain 층을 Al 120 nm로 evaporator 이용하여 증착하였다. 제작한 샘플을 전기적 특성인 Threshold voltage, Subthreshold swing, Field effect mobility, ON/OFF current ratio, Programming & Erasing 특성, Charge retention 특성 등을 알아보았다.

  • PDF

Co-interlayer와 $SiO_2$ 상부막의 유무에 따른 Nickel Germanosilicide의 열안정성 연구

  • 조유정;한길진;오순영;김용진;이원재;이희덕;김영철
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2005.05a
    • /
    • pp.215-218
    • /
    • 2005
  • Co-interlayer와 $SiO_2$ 상부막이 nickel germanosilicide 박막의 열안정성에 미치는 영향을 연구하였다. Nickel germanosilicide는 SiGe 기판 위에 Ni(8nm)/TiN(25nm), Ni(6m)/Co(2nm)/TiN(25nm)을 증착하여 각각 one step RIP($500^{\circ}C$)와 two step RTP(500. $700^{\circ}C$)로 형성되었다. 50과 10nm 두께의 $SiO_2$ 박막을 실리사이드 위에 증착하고, 550, 600, $650^{\circ}C$에서 30분간 열처리한 후 면저항 값을 측정하여 열안정성을 평가하였다.

  • PDF

Organic Photovoltaic Effects Depending on the Layer Thickness (CuPc/$C_{60}$를 이용한 유기 광기전 소자에서 유기층의 두께에 따른 특성)

  • Han, Wone-Keun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.535-536
    • /
    • 2005
  • Organic photovoltaic effects were studied in a device structure of ITO/CuPc/Al and ITO/CuPc/$C_{60}$/BCP/Al. A thickness of CuPc layer was varied from 10 nm to 50 nm, we have obtained that the optimum CuPc layer thickness is around 40 nm from the analysis of the current density-voltage characteristics in CuPc single layer photovoltaic cell. From the thickness-dependent photovoltaic effects in CuPc/$C_{60}$ heterojunction devices, higher power conversion efficiency was obtained in ITO/20nm CuPc/40nm $C_{60}$/Al, which has a thickness ratio (CuPc:$C_{60}$) of 1:2 rather than 1:1 or 1:3. Light intensity on the device was measured by calibrated Si-photodiode and radiometer/photometer of International Light Inc(IL14004).

  • PDF

Characterization of Ceramic Membranes by Gas-Liquid Displacement Porometer and Liquid-Liquid Displacement Porometer (Gas-Liquid Displacement Porometer와 Liquid-Liquid Displacement Porometer를 이용한 세라믹 분리막 특성 분석)

  • Kim, Yeo-Jin;Kim, Seong-Joong;Kim, Jeong;Jo, Yeong-Hoon;Park, Hosik;Lee, Pyung-Soo;Park, You-In;Park, Ho-Bum;Nam, Seung-Eun
    • Membrane Journal
    • /
    • v.27 no.3
    • /
    • pp.263-272
    • /
    • 2017
  • There are several different methods to characterize membrane pore size distribution, however, it is yet difficult to accurately measure pore size range of 10-50 nm. In this work, we employed gas-liquid displacement porometer (GLDP) and liquid-liquid displacement porometer (LLDP) to characterize in-house alumina hollow fiber membrane (K-100) and commercial membranes (A-100, A-20) that exhibit pore sizes between 10-100 nm. GLDP method was more suitable for measuring the maximum pore size, and the measured mean pore size of the membranes by LLDP were better correlated with water permeability and solute rejection. It was determined that LLDP is effective for measuring pore sizes between 10-50 nm; however, the method holds intrinsic disadvantages such as low precision and high sensitivity compared to that of GLDP. Nevertheless, it is expected that the recently commercialized LLDP technique can provide useful data that other methods cannot.