• Title/Summary/Keyword: 3Q

Search Result 5,986, Processing Time 0.033 seconds

A NOTE ON THE ZEROS OF THE q-BERNOULLI POLYNOMIALS

  • Ryoo, Cheon-Seoung
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.3_4
    • /
    • pp.805-811
    • /
    • 2010
  • It is the aim of this paper to observe an interesting phenomenon of 'scattering' of the zeros of the q-Bernoulli polynomials $B_{n,q}(x)$ for -1 < q < 0 in complex plane. Observe that the structure of the zeros of the Genocchi polynomials $G_n(x)$ resembles the structure of the zeros of the q-Bernoulli polynomials $B_{n,q}(x)$ as q $\rightarrow$ -1.

SOME RELATIONSHIPS BETWEEN (p, q)-EULER POLYNOMIAL OF THE SECOND KIND AND (p, q)-OTHERS POLYNOMIALS

  • KANG, JUNG YOOG;AGARWAL, R.P.
    • Journal of applied mathematics & informatics
    • /
    • v.37 no.3_4
    • /
    • pp.219-234
    • /
    • 2019
  • We use the definition of Euler polynomials of the second kind with (p, q)-numbers to identify some identities and properties of these polynomials. We also investigate some relationships between (p, q)-Euler polynomials of the second kind, (p, q)-Bernoulli polynomials, and (p, q)-tangent polynomials by using the properties of (p, q)-exponential function.

Development of Quality Assessment Tool and Application to Customer-Oriented Hospital Foodservice Management (고객지향적 병원 급식서비스 운영을 위한 질 평가 도구 개발 및 적용)

  • 이해영;장승희;양일선
    • Journal of Nutrition and Health
    • /
    • v.37 no.4
    • /
    • pp.329-338
    • /
    • 2004
  • The purposes of this study were to : a) develop the quality assessment tool of hospital foodservice management, b) evaluate the S hospital's foodservice quality by this tool, and c) do the feasibility study about this tool in hospital food-service field by establishing quality management strategies. The developed quality assessment tool of hospital food-service management was consisted of 20 items for quality evaluation by Likert 5 point scale and two additional questions with the most satisfactory item and the most unsatisfactory item. As a result of evaluation, S hospital's foodservice quality was somewhat high, on the factor 'personnel attitude', especially. The IPA technique proved nine items including Q5, Q7, Q8, Q11, Q12, Q13, Q15, Q16, Q17 were in 'Doing Great, Keep It Up' and seven items such as Q1, Q2, Q3, Q6, Q9, Q18, Q19 that got high expectation and low perception needed to be focused in quality management strategy.

Digital Image Processing Using Tunable Q-factor Discrete Wavelet Transformation (Q 인자의 조절이 가능한 이산 웨이브렛 변환을 이용한 디지털 영상처리)

  • Shin, Jong Hong
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.3
    • /
    • pp.237-247
    • /
    • 2014
  • This paper describes a 2D discrete-time wavelet transform for which the Q-factor is easily specified. Hence, the transform can be tuned according to the oscillatory behavior of the image signal to which it is applied. The tunable Q-factor wavelet transform (TQWT) is a fully-discrete wavelet transform for which the Q-factor, Q, of the underlying wavelet and the asymptotic redundancy (over-sampling rate), r, of the transform are easily and independently specified. In particular, the specified parameters Q and r can be real-valued. Therefore, by tuning Q, the oscillatory behavior of the wavelet can be chosen to match the oscillatory behavior of the signal of interest, so as to enhance the sparsity of a sparse signal representation. The TQWT is well suited to fast algorithms for sparsity-based inverse problems because it is a Parseval frame, easily invertible, and can be efficiently implemented. The TQWT can also be used as an easily-invertible discrete approximation of the continuous wavelet transform. The transform is based on a real valued scaling factor (dilation-factor) and is implemented using a perfect reconstruction over-sampled filter bank with real-valued sampling factors. The transform is parameterized by its Q-factor and its oversampling rate (redundancy), with modest oversampling rates (e. g. 3-4 times overcomplete) being sufficient for the analysis/synthesis functions to be well localized. Therefore, This method services good performance in image processing fields.

A q-ANALOGUE OF THE GENERALIZED FACTORIAL NUMBERS

  • Song, Seok-Zun;Cheon, Gi-Sang;Jun, Young-Bae;Beasley, Leroy B.
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.3
    • /
    • pp.645-657
    • /
    • 2010
  • In this paper, more generalized q-factorial coefficients are examined by a natural extension of the q-factorial on a sequence of any numbers. This immediately leads to the notions of the extended q-Stirling numbers of both kinds and the extended q-Lah numbers. All results described in this paper may be reduced to well-known results when we set q = 1 or use special sequences.

SOME GROWTH ESTIMATIONS BASED ON (p, q)-𝜑 RELATIVE GOL'DBERG TYPE AND (p, q)-𝜑 RELATIVE GOL'DBERG WEAK TYPE OF ENTIRE FUNCTIONS OF SEVERAL COMPLEX VARIABLES

  • Biswas, Tanmay;Biswas, Ritam
    • Korean Journal of Mathematics
    • /
    • v.28 no.3
    • /
    • pp.489-507
    • /
    • 2020
  • In this paper we discussed some growth properties of entire functions of several complex variables on the basis of (p, q)-𝜑 relative Gol'dberg type and (p, q)-𝜑 relative Gol'dberg weal type where p, q are positive integers and 𝜑(R) : [0, +∞) → (0, +∞) is a non-decreasing unbounded function.

N-SUBALGEBRAS OF TYPE (∈, ∈ ∨ q) BASED ON POINT N-STRUCTURES IN BCK/BCI-ALGEBRAS

  • Lee, Kyoung-Ja;Jun, Young-Bae;Zhang, Xiaohong
    • Communications of the Korean Mathematical Society
    • /
    • v.27 no.3
    • /
    • pp.431-439
    • /
    • 2012
  • Characterizations of $\mathcal{N}$-subalgebra of type (${\in}$, ${\in}{\vee}q$) are provided. The notion of $\mathcal{N}$-subalgebras of type ($\bar{\in}$, $\bar{\in}{\vee}\bar{q}$) is introduced, and its characterizations are discussed. Conditions for an $\mathcal{N}$-subalgebra of type (${\in}$, ${\in}{\vee}q$) (resp. ($\bar{\in}$, $\bar{\in}{\vee}\bar{q}$) to be an $\mathcal{N}$-subalgebra of type (${\in}$, ${\in}$) are considered.