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1. Introduction

Mathematicians have been working on Bernoulli numbers and polynomials,
Euler numbers and polynomials, Genocchi numbers and polynomials, and tan-
gent numbers and polynomials (see [1, 2, 3, 4, 5, 6, 10, 11, 12, 14]). It is well
known that the Bernoulli polynomials are defined by the generating function to
be (

t

et − 1

)
ext =

∞∑
n=0

Bn(x)
tn

n!
. (1)

When x = 0, Bn = Bn(0) are called the Bernoulli numbers. The tangent
polynomials are given by the generating function to be(

2

e2t + 1

)
ext =

∞∑
n=0

Tn(x)
tn

n!
. (2)

When x = 0, Tn = Tn(0) are called the tangent numbers (see [5, 6, 7]).

The Bernoulli polynomials B
(r)
n (x) of order r are defined by the following

generating function(
t

et − 1

)r

ext =

∞∑
n=0

B(r)
n (x)

tn

n!
, (|t| < 2π). (3)
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The Frobenius–Euler polynomials of order r, denoted by H
(r)
n (u, x), are defined

as (
1− u

et − u

)r

ext =

∞∑
n=0

H(r)
n (u, x)

tn

n!
. (4)

The values at x = 0 are called Frobenius-Euler numbers of order r; when r = 1,
the polynomials or numbers are called ordinary Frobenius-Euler polynomials or

numbers. The cosine-tangent polynomials T
(C)
n (x, y) and sine-tangent polyno-

mials T
(S)
n (x, y) are defined by means of the generating functions

∞∑
n=0

T (C)
n (x, y)

tn

n!
=

2

e2t + 1
ext cos yt, (5)

and
∞∑

n=0

T (k,S)
n (x, y)

tn

n!
=

2

e2t + 1
ext sin yt, (6)

respectively.
For any integer k and 0 ≤ q < p ≤ 1, let Lik,q(t) be the power series given by

Lik,p,q(t) =

∞∑
m=1

tm

[m]kp,q
, (7)

where [n]p,q =
pn − qn

p− q
is the (p, q)-integer.

Note that if p = 1, then limq→1[x]p,q = x and limq→1 Lik,p,q(t) = Lik(t),
where Lik(t) is the kth polylogarithm function. In this paper, we introduce
some special polynomials which are related to tangent polynomials. In addi-
tion, we give some identities for these polynomials. Finally, we investigate the
distribution of zeros of these polynomials.

2. (p, q)-poly-cosine tangent and (p, q)-poly-sine tangent polynomials

In this section, we define the (p, q)-poly-cosine tangent and (p, q)-poly-sine
tangen polynomials. In [9, 11, 12], we introduced poly-tangent numbers and
polynomials, poly-cosine tangent and poly-sine tangent polynomials, and q-poly-
tangent numbers and polynomials. After that we investigated some their prop-
erties. We also obtained some relationships both between these polynomials
and tangent polynomials and between these polynomials and cauchy numbers.

For any integer k, the modified poly-tagent polynomials T
(k)
n (z) are defined by

means of the generating function

∞∑
n=0

T (k)
n (z)

tn

n!
=

2Lik(1− e−t)

t(e2t + 1)
ezt. (8)

The numbers T
(k)
n (0) := T

(k)
n are called the poly-tagent numbers.
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For 0 < q < p ≤ 1 and any integer k, the (p, q)-poly-Bernoulli polynomi-

als B
(k)
n,p,q(x), the (p, q)-poly-Euler polynomials E

(k)
n,p,q(x), and the (p, q)-poly-

tangent polynomials T
(k)
n,p,q(x) are defined by means of the following generating

functions:

Lik,p,q(1− e−t)

1− e−t
ext =

∞∑
n=0

B(k)
n,p,q(x)

tn

n!
,

2Lik,p,q(1− e−t)

et + 1
ext =

∞∑
n=0

E(k)
n,p,q(x)

tn

n!
,

2Lik,p,q(1− e−t)

e2t + 1
ext =

∞∑
n=0

T (k)
n,p,q(x)

tn

n!
.

(9)

Now, we define modified (p, q)-poly-tangent numbers and polynomials.

Definition 2.1. For any integer k and 0 < q < p ≤ 1, the modified (p, q)-poly-

tagent polynomials T
(k)
n,p,q(x) are defined by means of the generating function

∞∑
n=0

T (k)
n,p,q(z)

tn

n!
=

2Lik,p,q(1− e−t)

t(e2t + 1)
ezt. (10)

The numbers T (k)
n,p,q(0) := T (k)

n,p,q are called the modified (p, q)-poly-tagent
numbers. If p = 1, then

lim
q→1

T (k)
n,p,q(z) = T (k)

n (z), lim
q→1

T (k)
n,p,q = T (k)

n .

Theorem 2.2. For n > 0, we have

T
(k)
n−1,p,q(z) =

1

n

n∑
l=0

(
n

l

)
(Tl(z)− Tl(z − 1))B

(k)
n−l,p,q.

Proof. By (2), (9), and (10) and by using Cauchy product, we have

∞∑
n=0

T (k)
n,p,q(z)

tn+1

n!
=

(
Lik,p,q(1− e−t)

1− e−t

)
2(1− e−t)

e2t + 1
ezt

=

( ∞∑
n=0

B(k)
n,p,q

tn

n!

)( ∞∑
n=0

(Tn(z)− Tn(z − 1))
tn

n!

)

=

∞∑
n=0

(
n∑

l=0

(
n

l

)
(Tl(z)− Tl(z − 1))B

(k)
n−l,p,q

)
tn

n!
.

(11)

By comparing the coefficients on both sides of (11), we have the theorem re-
lated the (p, q)-poly-tangent polynomial, (p, q)-poly-Bernoulli polynomials, and
tangent polynomials. □
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Now, we consider the (p, q)-poly-tagent polynomials that are given by the
generating function to be

∞∑
n=0

T (k)
n,p,q(x+ iy)

tn

n!
=

2Lik,p,q(1− e−t)

t(e2t + 1)
e(x+iy)t. (12)

On the other hand, we note that

e(x+iy)t = exteiyt = ext(cos yt+ i sin yt). (13)

From (12) and (13), we obtain
∞∑

n=0

T (k)
n,p,q(x+ iy)

tn

n!
=

2Lik,p,q(1− e−t)

t(e2t + 1)
ext(cos yt+ i sin yt), (14)

and
∞∑

n=0

T (k)
n,p,q(x− iy)

tn

n!
=

2Lik,p,q(1− e−t)

t(e2t + 1)
ext(cos yt− i sin yt). (15)

Hence, by (14) and (15), we obtain

2Lik,p,q(1− e−t)

t(e2t + 1)
ext cos yt =

∞∑
n=0

(
T (k)
n,p,q(x+ iy) + T (k)

n,p,q(x− iy)

2

)
tn

n!
, (16)

and

2Lik,p,q(1− e−t)

t(e2t + 1)
ext sin yt =

∞∑
n=0

(
T (k)
n,p,q(x+ iy)− T (k)

n,p,q(x− iy)

2i

)
tn

n!
. (17)

It follows that we define the following (p, q)-poly-cosine tangent and (p, q)-poly-
sine-tangent polynomials.

Definition 2.3. The (p, q)-poly-cosine tangent polynomials T (k,C)
n,p,q (x, y) and

(p, q)-poly-sine tangent polynomials T (k,S)
n,p,q (x, y) are defined by means of the

generating functions
∞∑

n=0

T (k,C)
n,p,q (x, y)

tn

n!
=

2Lik,p,q(1− e−t)

t(e2t + 1)
ext cos yt, (18)

and
∞∑

n=0

T (k,S)
n,p,q (x, y)

tn

n!
=

2Lik,p,q(1− e−t)

t(e2t + 1)
ext sin yt, (19)

respectively.

Note that T (k,C)
n,p,q (x, 0) = T (k)

n,p,q(x), T (k,S)
n,p,q (x, 0) = 0, (n ≥ 0).

By (16)-(19), we have

T (k,C)
n,p,q (x, y) =

T (k)
n,p,q(x+ iy) + T (k)

n,p,q(x− iy)

2
,

T (k,S)
n,p,q (x, y) =

T (k)
n,p,q(x+ iy)− T (k)

n,p,q(x− iy)

2i
.
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Clearly, we obtain the following explicit representations of T (k)
n,p,q(x+ iy)

T (k)
n,p,q(x+ iy) =

n∑
l=0

(
n

l

)
T (k)
l,p,q(x+ iy)n−l,

T (k)
n,p,q(x+ iy) =

n∑
l=0

(
n

l

)
T (k)
l,p,q(x)i

n−lyn−l.

Let

ext cos yt =

∞∑
l=0

Cl(x, y)
tl

l!
, ext sin yt =

∞∑
l=0

Sl(x, y)
tl

l!
. (20)

Then, by Taylor expansions of ext cos yt and ext sin yt, we get

ext cos yt =

∞∑
l=0

 [ l2 ]∑
m=0

(
l

2m

)
(−1)mxl−2my2m

 tl

l!
(21)

and

ext sin yt =

∞∑
l=0

[ l−1
2 ]∑

m=0

(
l

2m+ 1

)
(−1)mxl−2m−1y2m+1

 tl

l!
, (22)

where [ ] denotes taking the integer part (see [4]). By (20), (21) and (22), we
get

Cl(x, y) =

[ l2 ]∑
m=0

(
l

2m

)
(−1)mxl−2my2m,

and

Sl(x, y) =

[ l−1
2 ]∑

m=0

(
l

2m+ 1

)
(−1)mxl−2m−1y2m+1, (l ≥ 0).

Now, we observe that

2Lik,p,q(1− e−t)

t(e2t + 1)
ext cos yt =

( ∞∑
l=0

T (k)
l,p,q

tl

l!

)( ∞∑
m=0

Cm(x, y)
tm

m!

)

=

∞∑
n=0

(
n∑

l=0

(
n

l

)
T (k)
l,p,qCn−l(x, y)

)
tn

n!
.

Therefore, we obtain the following theorem

Theorem 2.4. For n ≥ 0, we have

T (k,C)
n,p,q (x, y) =

n∑
l=0

(
n

l

)
T (k)
l,p,qCn−l(x, y)

and

T (k,S)
n,p,q (x, y) =

n∑
l=0

(
n

l

)
T (k)
l,p,qSn−l(x, y).
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We remember that the classical Stirling numbers of the first kind S1(n, k) and
S2(n, k) are defined by the relations (see [12])

xn =

n∑
k=0

S2(n, k)(x)k and (x)n =

n∑
k=0

S1(n, k)x
k, (23)

respectively. Here, (x)n = x(x − 1) · · · (x − n + 1) denotes the falling factorial
polynomial of order n. The numbers S2(n,m) also admit a representation in
terms of a generating function

(et − 1)m

m!
=

∞∑
n=m

S2(n,m)
tn

n!
. (24)

Let

Lik,p,q(1− e−t)ext cos yt =

∞∑
l=0

C
(k)
l,p,q(x, y)

tl

l!
,

Lik,p,q(1− e−t)ext sin yt =

∞∑
l=0

S
(k)
l,p,q(x, y)

tl

l!
.

(25)

Then, by (21), we get

∞∑
n=0

C(k)
n,p,q(x, y)

tn

n!
=

∞∑
l=0

(1− e−t)l+1

[l + 1]kp,q
ext cos yt,

=

∞∑
l=0

1

[l + 1]kp,q

l+1∑
i=0

(
l + 1

i

)
(−1)ie(x−i)t cos(yt)

=

∞∑
l=0

1

[l + 1]kp,q

l+1∑
i=0

(
l + 1

i

)
(−1)i

∞∑
n=0

Cn(x− i, y)
tn

n!

=

∞∑
n=0

( ∞∑
l=0

1

[l + 1]kp,q

l+1∑
i=0

(
l + 1

i

)
(−1)iCn(x− i, y)

)
tn

n!
.

(26)
By (25) and (26), we get

C(k)
n,p,q(x, y) =

∞∑
l=0

1

[l + 1]kp,q

l+1∑
i=0

(
l + 1

i

)
(−1)iCn(x− i, y)

=

n∑
l=0

l∑
i=0

[n−l
2 ]∑

m=0

(
n

l

)(
n− l

2m

)
(−1)l+i+ni!S2(l, i)

[i]kp,q
xn−l−2my2m,
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and

S(k)
n,p,q(x, y) =

∞∑
l=0

1

[l + 1]kp,q

l+1∑
i=0

(
l + 1

i

)
(−1)iSn(x− i, y)

=

n∑
l=0

l∑
i=0

[n−l−1
2 ]∑

m=0

(
n

l

)(
n− l

2m+ 1

)
(−1)l+i+ni!S2(l, i)

[i]kp,q
xn−l−2m−1y2m+1.

A few of them are

C
(k)
0,q (x, y) = 1, C

(k)
1,q (x, y) = 1,

C
(k)
2,q (x, y) = −1 +

2

[2]kp,q
+ 2x,

C
(k)
3,q (x, y) = 1− 6

[2]kp,q
+

6

[3]kp,q
− 3x+

6

[2]kp,q
x+ 3x2 − 3y2,

and

S
(k)
0,q (x, y) = 0, S

(k)
1,q (x, y) = 0,

S
(k)
2,q (x, y) = 2y,

S
(k)
3,q (x, y) = −3y +

6

[2]kp,q
y + 6xy.

S
(k)
4,q (x, y) = 4y − 24

[2]kp,q
y +

24

[3]kp,q
y − 12xy +

24

[2]kp,q
xy + 12x2y − 4y3.

Now, we observe that

∞∑
n=0

T (k,C)
n,q (x, y)

tn+1

n!
= Lik,p,q(1− e−t)ext cos yt

2

e2t + 1

=

( ∞∑
n=0

C(k)
n,p,q(x, y)

tn

n!

)( ∞∑
n=0

Tn
tn

n!

)

=

∞∑
n=0

(
n∑

l=0

(
n

l

)
C

(k)
l,p,q(x, y)Tn−l

)
tn

n!
.

Therefore, we obtain the following theorem

Theorem 2.5. For n > 0, we have

nT (k,C)
n−1,p,q(x, y) =

n∑
l=0

(
n

l

)
C

(k)
l,p,q(x, y)Tn−l

and

nT (k,S)
n−1,p,q(x, y) =

n∑
l=0

(
n

l

)
S
(k)
l,p,q(x, y)Tn−l.
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From (18), we have

2Lik,p,q(1− e−t)ext cos yt

=

( ∞∑
n=0

T (k,C)
n,p,q (x, y)

tn+1

n!

)(
e2t + 1

)
=

∞∑
n=0

(
n∑

l=0

l

(
n

l

)
T (k,C)
l−1,p,q(x, y)2

n−l + nT (k,C)
n−1,p,q(x, y)

)
tn

n!
.

(27)

By (18) and (27), we get

C(k)
n,p,q(x, y) =

1

2

(
n∑

l=0

l

(
n

l

)
T (k,C)
l−1,p,q(x, y)2

n−l + nT (k,C)
n−1,p,q(x, y)

)
.

Therefore, we obtain the following theorem

Theorem 2.6. For n > 0, we have

C(k)
n,p,q(x, y) =

1

2

(
n∑

l=0

l

(
n

l

)
T (k,C)
l−1,p,q(x, y)2

n−l + nT (k,C)
n−1,p,q(x, y)

)
,

and

S(k)
n,p,q(x, y) =

1

2

(
n∑

l=0

l

(
n

l

)
T (k,S)
l−1,p,q(x, y)2

n−l + nT (k,S)
n−1,p,q(x, y)

)
.

Now, we observe that
∞∑

n=0

T (k,C)
n,p,q (x+ 2, y)

tn

n!
=

2Lik,p,q(1− e−t)

t(e2t + 1)
e(x+2)t cos yt

=
2Lik,p,q(1− e−t)

t(e2t + 1)
ext(e2t − 1 + 1) cos yt

=
2

t
Lik,p,q(1− e−t)ext cos yt− 2Lik,p,q(1− e−t)

t(e2t + 1)
ext cos yt

Hence we have
∞∑

n=0

(
T (k,C)
n,p,q (x+ 2, y) + T (k,C)

n,p,q (x, y)
) tn+1

n!
=

∞∑
n=0

(
2C(k)

n,p,q(x, y)
) tn

n!
.

By comparing the coefficients on the both sides, we get

T (k,C)
n−1,p,q(x+ 2, y) + T (k,C)

n−1,p,q(x, y) =
2

n
C(k)

n,p,q(x, y), (n ≥ 1).

Therefore, we obtain the following theorem:

Theorem 2.7. For n ≥ 1, we have

T (k,C)
n−1,p,q(x+ 2, y) + T (k,C)

n−1,p,q(x, y) =
2

n
C(k)

n,p,q(x, y),
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and

T (k,S)
n−1,p,q(x+ 2, y) + T (k,S)

n−1,p,q(x, y) =
2

n
S(k)
n,p,q(x, y).

By (18), we have

∞∑
n=0

T (k,C)
n,p,q (x+ r, y)

tn

n!
=

(
2Lik,p,q(1− e−t)

t(e2t + 1)
ext cos yt

)
ert

=

( ∞∑
l=0

T (k,C)
l,p,q (x, y)

tl

l!

)( ∞∑
l=0

rl
tl

l!

)

=

∞∑
n=0

(
n∑

l=0

(
n

l

)
T (k,C)
l,p,q (x, y)rn−l

)
tn

n!
.

Therefore, by comparing the coefficients on the both sides, we obtain the follow-
ing theorem:

Theorem 2.8. For n ≥ 0, r ∈ N, we have

T (k,C)
n,p,q (x+ r, y) =

n∑
l=0

(
n

l

)
T (k,C)
l,p,q (x, y)rn−l,

and

T (k,S)
n,p,q (x+ r, y) =

n∑
l=0

(
n

l

)
T (k,S)
l,p,q (x, y)rn−l.

By (18), we get

∞∑
n=1

∂

∂x
T (k,C)
n,p,q (x, y)

tn

n!
=

∂

∂x

(
2Lik,p,q(1− e−t)

t(e2t + 1)
ext cos yt

)
=

2Lik,p,q(1− e−t)

e2t + 1
ext cos yt

=
∞∑

n=1

(
nT (k,C)

n−1,p,q(x, y)
) tn

n!
.

(28)

Comparing the coefficients on the both sides of (28), we have

∂

∂x
T (k,C)
n,q (x, y) = nT

(k,C)
n−1,q(x, y).

Similarly, for n ≥ 1, we have

∂

∂x
T (k,S)
n,p,q (x, y) = nT (k,S)

n−1,p,q(x, y),

∂

∂y
T (k,C)
n,p,q (x, y) = −nT (k,S)

n−1,p,q(x, y),

∂

∂y
T (k,S)
n,p,q (x, y) = nT (k,C)

n−1,p,q(x, y).
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By (18), (24) and by using Cauchy product, we get

∞∑
n=0

T (k,C)
n,p,q (x, y)

tn

n!
=

(
2Lik,p,q(1− e−t)

t(e2t + 1)

)
(1− (1− e−t))−x cos yt

=

(
2Lik,p,q(1− e−t)

t(e2t + 1)

)
cos yt

∞∑
l=0

(
x+ l − 1

l

)
(1− e−t)l

=

∞∑
l=0

< x >l
(et − 1)l

l!

(
2Lik,p,q(1− e−t)

t(e2t + 1)

)
e−lt cos yt

=

∞∑
l=0

< x >l

∞∑
n=0

S2(n, l)
tn

n!

∞∑
n=0

T (k,C)
n,p,q (−l, y)

tn

n!

=

∞∑
n=0

( ∞∑
l=0

n∑
i=l

(
n

i

)
S2(i, l)T (k,C)

n−i,p,q(−l, y) < x >l

)
tn

n!
,

(29)
where < x >l= x(x+ 1) · · · (x+ l − 1)(l ≥ 1) with < x >0= 1.
By comparing the coefficients on both sides of (29), we have the following

theorem:

Theorem 2.9. For n > 0, we have

T (k,C)
n,p,q (x, y) =

∞∑
l=0

n∑
i=l

(
n

i

)
S2(i, l)T (k,C)

n−i,p,q(−l, y) < x >l,

T (k,S)
n,q (x, y) =

∞∑
l=0

n∑
i=l

(
n

i

)
S2(i, l)T (k,S)

n−i,p,q(−l, y) < x >l .

Now, we define the new type polynomials that are given by the generating
functions to be

2Lik,p,q(1− e−t)

t(e2t + 1)
cos yt =

∞∑
n=0

T (k,C)
n,p,q (y)

tn

n!
, (30)

and

2Lik,p,q(1− e−t)

t(e2t + 1)
sin yt =

∞∑
n=0

T (k,S)
n,p,q (y)

tn

n!
, (31)

respectively.

Note that T (k,C)
n,p,q (0, y) = T (k,C)

n,p,q (y), T (k,S)
n,p,q (0, y) = T (k,S)

n,p,q (y), T (k,C)
n,p,q (0) = T (k)

n,p,q,

T (k,S)
n,p,q (0) = 0. The new type polynomials can be determined explicitly. A few
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of them are

T (k,C)
0,p,q (y) = 1, T (k,C)

1,p,q (y) = −3

2
+

1

[2]kp,q
,

T (k,C)
2,p,q (y) =

4

3
− 4

[2]kp,q
+

2

[3]kp,q
− y2,

T (k,C)
3,p,q (y) =

3

4
+

19

2[2]kp,q
− 15

[3]kp,q
+

6

[4]kp,q
+

9y2

2
− 3

[2]kp,q
y2,

and
T (k,S)
0,p,q (y) = 0, T (k,S)

1,p,q (y) = y,

T (k,S)
2,p,q (y) = −3y +

2

[2]kp,q
y,

T (k,S)
3,p,q (y) = 4y − 12

[2]kp,q
y +

6

[3]kp,q
y − y3.

From (20), we derive the following equations:

2Lik,p,q(1− e−t)

t(e2t + 1)
cos yt =

∞∑
k=0

 [ k2 ]∑
m=0

(
k

2m

)
(−1)mT (k)

k−2m,p,qy
2m

 tk

k!
, (32)

and
2Lik,p,q(1− e−t)

t(e2t + 1)
sin yt

=

∞∑
k=0

[ k−1
2 ]∑

m=0

(
k

2m+ 1

)
(−1)mT (k)

k−2m−1,p,qy
2m+1

 tk

k!
.

(33)

By (30), (31), (32), (33), we get

T (C)
n,p,q(y) =

[n2 ]∑
m=0

(
n

2m

)
(−1)my2mT (k)

n−2m,p,q,

and

T (S)
n,p,q(y) =

[n−1
2 ]∑

m=0

(
n

2m+ 1

)
(−1)my2m+1T (k)

n−2m−1,p,q.

From (18), (19), (30), and (31), we derive the following theorem:

Theorem 2.10. For n ≥ 0, we have

T (k,C)
n,p,q (x, y) =

n∑
l=0

(
n

l

)
xn−lT (k,C)

l,p,q (y),

and

T (k,S)
n,p,q (x, y) =

n∑
l=0

(
n

l

)
xn−lT (k,S)

l,p,q (y).
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By (18), (30), and by using Cauchy product, we have

∞∑
n=0

T (C)
n,q (x, y)

tn

n!
=

(
2Lik,p,q(1− e−t)

t(e2t + 1)

)
((et − 1) + 1)x cos yt

=
2Lik,p,q(1− e−t)

t(e2t + 1)
cos yt

∞∑
l=0

(
x

l

)
(et − 1)l

=

∞∑
l=0

(x)l
(et − 1)l

l!

(
2Lik,p,q(1− e−t)

t(e2t + 1)
cos yt

)

=

∞∑
l=0

(x)l

∞∑
n=0

S2(n, l)
tn

n!

∞∑
n=0

T (k,C)
n,p,q (y)

tn

n!

=

∞∑
n=0

( ∞∑
l=0

n∑
i=l

(
n

i

)
(x)lS2(i, l)T (k,C)

n−i,p,q(y)

)
tn

n!
.

(34)

By comparing the coefficients on both sides of (34), we have the following
theorem:

Theorem 2.11. For n ≥ 0, we have

T (k,C)
n,q (x, y) =

∞∑
l=0

n∑
i=l

(
n

i

)
(x)lS2(i, l)T

(k,C)
n−i,q(y),

T (k,S)
n,q (x, y) =

∞∑
l=0

n∑
i=l

(
n

i

)
(x)lS2(i, l)T

(k,S)
n−i,q(y).

By (3), (24) and by using Cauchy product, we have

∞∑
n=0

T (k,C)
n,p,q (x, y)

tn

n!

=

(
2Lik,p,q(1− e−t)

t(e2t + 1)

)
ext cos(yt)

=
(et − 1)r

r!

r!

tr

(
t

et − 1

)r

ext
∞∑

n=0

T (k,C)
n,p,q (y)

tn

n!

=
(et − 1)r

r!

( ∞∑
n=0

B(r)
n (x)

tn

n!

)( ∞∑
n=0

T (k,C)
n,p,q (y)

tn

n!

)
r!

tr

=

∞∑
n=0

(
n∑

l=0

(
n
l

)(
l+r
r

)S2(l + r, r)

n−l∑
i=0

(
n− l

i

)
B

(r)
i (x)T (k,C)

n−l−i,p,q(y)

)
tn

n!
.

By comparing the coefficients on both sides, we have the following theorem:
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Theorem 2.12. For n ≥ 0 and r ∈ N, we have

T (k,C)
n,p,q (x, y) =

n∑
l=0

(
n
l

)(
l+r
r

)S2(l + r, r)

n−l∑
i=0

(
n− l

i

)
T (k,C)
n−l−i,p,q(y)B

(r)
i (x),

T (k,S)
n,p,q (x, y) =

n∑
l=0

(
n
l

)(
l+r
r

)S2(l + r, r)

n−l∑
i=0

(
n− l

i

)
T (k,S)
n−l−i,p,q(y)B

(r)
i (x).

By (4), (18), (24) and by using the Cauchy product, we get

∞∑
n=0

T (k,C)
n,p,q (x, y)

tn

n!
=

(
2Lik,p,q(1− e−t)

t(e2t + 1)

)
ext cos(yt)

=
(et − u)r

(1− u)r

(
1− u

et − u

)r

ext
(
2Lik,p,q(1− e−t)

t(e2t + 1)

)
cos yt

=

∞∑
n=0

H(r)
n (u, x)

tn

n!

r∑
i=0

(
r

i

)
eit(−u)r−i 1

(1− u)r

(
2Lik,p,q(1− e−t)

t(e2t + 1)

)
cos yt

=
1

(1− u)r

r∑
i=0

(
r

i

)
(−u)r−i

∞∑
n=0

H(r)
n (u, x)

tn

n!

∞∑
n=0

T (k,C)
n,p,q (i, y)

tn

n!

=

∞∑
n=0

(
1

(1− u)r

r∑
i=0

(
r

i

)
(−u)r−i

n∑
l=0

(
n

l

)
H

(r)
l (u, x)T (k,C)

n−l,p,q(i, y)

)
tn

n!
.

By comparing the coefficients on both sides, we have the following theorem:

Theorem 2.13. For n ≥ 0 and r ∈ N, we have

T (k,C)
n,p,q (x, y) =

1

(1− u)r

r∑
i=0

n∑
l=0

(
r

i

)(
n

l

)
(−u)r−iT (k,C)

n−l,p,q(i, y)H
(r)
l (u, x),

T (k,S)
n,p,q (x, y) =

1

(1− u)r

r∑
i=0

n∑
l=0

(
r

i

)(
n

l

)
(−u)r−iT (k,S)

n−l,p,q(i, y)H
(r)
l (u, x).

By Theorem 2.11, Theorem 2.12, and Theorem 2.13 we have the following
corollary.

Corollary 2.14. For n ≥ 0 and r ∈ N, we have

∞∑
l=0

n∑
i=l

(
n

i

)
(x)lS2(i, l)T (k,C)

n−i,p,q(y)

=
1

(1− u)r

r∑
i=0

n∑
l=0

(
r

i

)(
n

l

)
(−u)r−iH

(r)
l (u, x)T (k,C)

n−l,p,q(i, y)

=

n∑
l=0

(
n
l

)(
l+r
r

)S2(l + r, r)

(
n− l

i

)
B

(r)
i (x)T (k,C)

n−l−i,p,q(y).
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3. Zeros of the (p, q)-poly-cosine tangent and (p, q)-poly-sine
polynomials

This section aims to demonstrate the benefit of using numerical investigation
to support theoretical prediction and to discover new interesting pattern of the

zeros of the (p, q)-poly-cosine tangent polynomials T (k,C)
n,p,q (x, y) and (p, q)-poly-

sine tangent polynomials T (k,S)
n,p,q (x, y). The (p, q)-poly-cosine tangent polyno-

mials T (k,C)
n,p,q (x, y) and (p, q)-poly-sine tangent polynomials T (k,S)

n,p,q (x, y) can be
determined explicitly. A few of them are

T (k,C)
0,p,q (x, y) = 1,

T (k,C)
1,p,q (x, y) = −3

2
+

1

[2]kp,q
+ x,

T (k,C)
2,p,q (x, y) =

4

3
− 4

[2]kq,q
+

2

[3]kp,q
− 3x+

2

[2]kp,q
x+ x2 − y2

T (k,C)
3,p,q (x, y) =

3

4
+

19

2[2]kp,q
− 15

3[2]kp,q
+

6

[4]kp,q
+ 4x− 12

[2]kp,q
x

+
6

[3]kp,q
x− 9x2

2
+

3

[2]kp,q
x2 + x3 +

9y2

2
− 3

[2]kp,q
y2 − 3xy2,

T (k,C)
4,p,q (x, y) = −14

5
− 12

[2]kp,q
+

66

[3]kp,q
− 72

[4]kp,q
+

24

[5]kp,q
+ 3x+

38

[2]kp,q
x

− 60

[3]kp,q
x+

24

[4]kp,q
x+ 8x2 − 24

[2]kp,q
x2 +

12

[3]kp,q
x2 − 6x3 +

4

[2]kp,q
x3

+ x4 − 8y2 +
24

[2]kp,q
y2 − 12

[3]kp,q
y2 + 18xy2 − 12

[2]kp,q
xy2 − 6x2y2 + y4.

and

T (k,S)
0,p,q (x, y) = 0,

T (k,S)
1,p,q (x, y) = y,

T (k,S)
2,p,q (x, y) = −3y +

1

[2]kp,q
y + 2xy

T (k,S)
3,p,q (x, y) = 4y − 12

[2]kp,q
y +

6

[3]kp,q
y − 9xy +

6

[2]kp,q
xy + 3x2y − y3,

T (k,S)
4,p,q (x, y) = 3y +

38

[2]kp,q
y − 60

[3]kp,q
y +

24

[4]kp,q
y + 16xy − 48

[2]kp,q
xy +

24

[3]kp,q
xy

− 18x2y +
12

[2]kp,q
x2y + 4x3y + 6y3 − 4

[2]kp,q
y3 − 4xy3,
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We investigate the beautiful zeros of the (p, q)-poly-cosine tangent polynomi-

als T (k,C)
n,p,q (x, y) by using a computer. We plot the zeros of the (p, q)-poly-cosine

tangent polynomials T (k,C)
n,p,q (x, y) for n = 50, k = 2, x = 2 (Figure 1). In Figure
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Figure 1. Zeros of T (k,C)
n,p,q (x, y)

1(top-left), we choose q = 1
10 . In Figure 1(top-right), we choose q = 3

10 . In

Figure 1(bottom-left), we choose q = 7
10 . In Figure 1(bottom-right), we choose

q = 9
10 .
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Stacks of zeros of T (k,C)
n,p,q (x, y) for 1 ≤ n ≤ 50, k = 2, x = 2 from a 3-D

structure are presented(Figure 2). In Figure 2(top-left), we choose q = 1
10 . In

Figure 2. Stacks of zeros of T (k,C)
n,p,q (x, y) for 1 ≤ n ≤ 50

Figure 2(top-right), we choose q = 3
10 . In Figure 2(bottom-left), we choose

q = 7
10 . In Figure 2(bottom-right), we choose q = 9

10 .
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The plot of real zeros of T (k,C)
n,p,q (x, y), k = 2, y = 2 for 1 ≤ n ≤ 50 structure

are presented(Figure 3). In Figure 3(top-left), we choose q = 1
10 . In Figure

Figure 3. Stacks of zeros of T (k,C)
n,p,q (x, y) for 1 ≤ n ≤ 50

3(top-right), we choose q = 3
10 . In Figure 3(bottom-left), we choose q = 7

10 . In

Figure 3(bottom-right), we choose q = 9
10 .
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We investigate the beautiful zeros of the (p, q)-poly-sine tangent polynomials

T (k,S)
n,p,q (x, y) by using a computer. We plot the zeros of the (p, q)-poly-sine tangent

polynomials T (k,S)
n,p,q (x, y) for n = 50 (Figure 4). In Figure 4(top-left), we choose
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Figure 4. Zeros of T (k,S)
n,p,q (x, y)

q = 1
10 . In Figure 4(top-right), we choose q = 3

10 . In Figure 4(bottom-left), we

choose q = 7
10 . In Figure 4(bottom-right), we choose q = 9

10 .
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Stacks of zeros of T (S)
n,p,q(x, y) for 1 ≤ n ≤ 50 from a 3-D structure are pre-

sented(Figure 5). In Figure 5(top-left), we choose k = 2, y = 2 and q = 1
10 . In

Figure 5. Stacks of zeros of T (k,S)
n,p,q (x, y) for 1 ≤ n ≤ 50

Figure 5(top-right), we choose k = 2, y = 2 and x = 3
10 . In Figure 5(bottom-

left), we choose k = 2, y = 2 and x = 7
10 . In Figure 5(bottom-right), we choose

k = 2, y = 2 and 9
10 .
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The plot of real zeros of T (S)
n,p,q(x, y) for 1 ≤ n ≤ 40 structure are pre-

sented(Figure 6). In Figure 6(top-left), we choose k = 2, y = 2 and q = 1
10 .

Figure 6. Stacks of zeros of T (k,S)
n,p,q (x, y) for 1 ≤ n ≤ 40

In Figure 6(top-right), we choose k = 2, y = 2 and q = 3
10 . In Figure 6(bottom-

left), we choose k = 2, y = 2 and q = 7
10 . In Figure 6(bottom-right), we choose

k = 2, y = 2 and q = 9
10 .
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Next, we calculated an approximate solution satisfying (p, q)-poly-sine tan-

gent polynomials T (k,S)
n,p,q (x, y) = 0 for y ∈ R. The results are given in Table

1.

Table 1. Approximate solutions of T (2,S)
n,p,q (4, y) = 0, q = 1

10

degree n y

1 0

2 0

3 −5.5486, 0, 5.5486

4 −2.9407, 0, 2.9407

5 −9.9476, −1.9154, 0, 1.9154, 9.9476

6 −5.1857, −1.3911, 0, 1.3911, 5.1857

7 −14.250, −3.3160, −1.2003, 0, 1.2003, 3.3160, 14.250

We also calculated an approximate solution satisfying (p, q)-poly-cosine tan-

gent polynomials T (k,C)
n,p,q (x, y) = 0 for x ∈ R.

Table 2. Approximate solutions of T (2,C)
n,p,q (x, 4) = 0, q = 1

10

degree n y

1 0.67355

2 −3.4256, 4.7727

3 −6.4261, 0.67298, 7.7737

4 −9.1928, −1.1874, 2.5333, 10.541

5 −11.868, −2.5983, 0.67061, 3.9466, 13.217

6 −14.499, −3.7995, −0.65949, 1.9997, 5.1513, 15.849

7 −17.105, −4.8799, −1.7461, 0.66689,

3.0889, 6.2356, 18.455

Conflicts of interest : The author declares no conflict of interest.

Data availability : Not applicable
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