• Title/Summary/Keyword: 3D-MID

Search Result 552, Processing Time 0.032 seconds

MARK SEQUENCES IN 3-PARTITE 2-DIGRAPHS

  • Merajuddin, Merajuddin;Samee, U.;Pirzada, S.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.11 no.1
    • /
    • pp.41-56
    • /
    • 2007
  • A 3-partite 2-digraph is an orientation of a 3-partite multi-graph that is without loops and contains at most two edges between any pair of vertices from distinct parts. Let D(X, Y, Z) be a 3-partite 2-digraph with ${\mid}X{\mid}=l,\;{\mid}Y{\mid}=m,\;{\mid}Z{\mid}=n$. For any vertex v in D(X, Y, Z), let $d^+_{\nu}\;and\;d^-_{\nu}$ denote the outdegree and indegree respectively of v. Define $p_x=2(m+n)+d^+_x-d^-_x,\;q_y=2(l+n)+d^+_y-d^-_y\;and\;r_z=2(l+m)+d^+_z-d^-_z$ as the marks (or 2-scores) of x in X, y in Y and z in Z respectively. In this paper, we characterize the marks of 3-partite 2-digraphs and give a constructive and existence criterion for sequences of non-negative integers in non-decreasing order to be the mark sequences of some 3-partite 2-digraph.

  • PDF

Weakly Complementary Cycles in 3-Connected Multipartite Tournaments

  • Volkmann, Lutz;Winzen, Stefan
    • Kyungpook Mathematical Journal
    • /
    • v.48 no.2
    • /
    • pp.287-302
    • /
    • 2008
  • The vertex set of a digraph D is denoted by V (D). A c-partite tournament is an orientation of a complete c-partite graph. A digraph D is called cycle complementary if there exist two vertex disjoint cycles $C_1$ and $C_2$ such that V(D) = $V(C_1)\;{\cup}\;V(C_2)$, and a multipartite tournament D is called weakly cycle complementary if there exist two vertex disjoint cycles $C_1$ and $C_2$ such that $V(C_1)\;{\cup}\;V(C_2)$ contains vertices of all partite sets of D. The problem of complementary cycles in 2-connected tournaments was completely solved by Reid [4] in 1985 and Z. Song [5] in 1993. They proved that every 2-connected tournament T on at least 8 vertices has complementary cycles of length t and ${\mid}V(T)\mid$ - t for all $3\;{\leq}\;t\;{\leq}\;{\mid}V(T)\mid/2$. Recently, Volkmann [8] proved that each regular multipartite tournament D of order ${\mid}V(D)\mid\;\geq\;8$ is cycle complementary. In this article, we analyze multipartite tournaments that are weakly cycle complementary. Especially, we will characterize all 3-connected c-partite tournaments with $c\;\geq\;3$ that are weakly cycle complementary.

CONSTRUCTIVE PROOF FOR THE POSITIVITY OF THE ORBIT POLYNOMIAL On,2d(q)

  • Lee, Jaejin
    • Korean Journal of Mathematics
    • /
    • v.25 no.3
    • /
    • pp.349-358
    • /
    • 2017
  • The cyclic group $C_n={\langle}(12{\cdots}n){\rangle}$ acts on the set $(^{[n]}_k)$ of all k-subsets of [n]. In this action of $C_n$ the number of orbits of size d, for d | n, is $$O^{n,k}_d={\frac{1}{d}}{\sum\limits_{{\frac{n}{d}}{\mid}s{\mid}n}}{\mu}({\frac{ds}{n}})(^{n/s}_{k/s})$$. Stanton and White [6] generalized the above identity to construct the orbit polynomials $$O^{n,k}_d(q)={\frac{1}{[d]_{q^{n/d}}}}{\sum\limits_{{\frac{n}{d}}{\mid}s{\mid}n}}{\mu}({\frac{ds}{n}})[^{n/s}_{k/s}]_{q^s}$$ and conjectured that $O^{n,k}_d(q)$ have non-negative coefficients. In this paper we give a constructive proof for the positivity of coefficients of the orbit polynomial $O^{n,2}_d(q)$.

UNITARILY INVARIANT NORM INEQUALITIES INVOLVING G1 OPERATORS

  • Bakherad, Mojtaba
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.889-899
    • /
    • 2018
  • In this paper, we present some upper bounds for unitarily invariant norms inequalities. Among other inequalities, we show some upper bounds for the Hilbert-Schmidt norm. In particular, we prove $${\parallel}f(A)Xg(B){\pm}g(B)Xf(A){\parallel}_2{\leq}{\Large{\parallel}}{\frac{(I+{\mid}A{\mid})X(I+{\mid}B{\mid})+(I+{\mid}B{\mid})X(I+{\mid}A{\mid})}{^dA^dB}}{\Large{\parallel}}_2$$, where A, B, $X{\in}{\mathbb{M}}_n$ such that A, B are Hermitian with ${\sigma}(A){\cup}{\sigma}(B){\subset}{\mathbb{D}}$ and f, g are analytic on the complex unit disk ${\mathbb{D}}$, g(0) = f(0) = 1, Re(f) > 0 and Re(g) > 0.

ON MIXED PRESSURE-VELOCITY REGULARITY CRITERIA FOR THE 3D MICROPOLAR EQUATIONS IN LORENTZ SPACES

  • Kim, Jae-Myoung;Kim, Jaewoo
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.34 no.1
    • /
    • pp.85-92
    • /
    • 2021
  • In present paper, inspired by the recently paper [1], we give the mixed pressure-velocity regular criteria in view of Lorentz spaces for weak solutions to 3D micropolar equations in a half space. Precisely, if (0.1) ${\frac{P}{(e^{-{\mid}x{\mid}^2}+{\mid}u{\mid})^{\theta}}{\in}L^p(0,T;L^{q,{\infty}}({\mathbb{R}}^3_+))$, p, q < ∞, and (0.2) ${\frac{2}{p}}+{\frac{3}{q}}=2-{\theta}$, 0 ≤ θ ≤ 1, then (u, w) is regular on (0, T].

The Geometry of the Space of Symmetric Bilinear Forms on ℝ2 with Octagonal Norm

  • Kim, Sung Guen
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.3
    • /
    • pp.781-791
    • /
    • 2016
  • Let $d_*(1,w)^2 ={\mathbb{R}}^2$ with the octagonal norm of weight w. It is the two dimensional real predual of Lorentz sequence space. In this paper we classify the smooth points of the unit ball of the space of symmetric bilinear forms on $d_*(1,w)^2$. We also show that the unit sphere of the space of symmetric bilinear forms on $d_*(1,w)^2$ is the disjoint union of the sets of smooth points, extreme points and the set A as follows: $$S_{{\mathcal{L}}_s(^2d_*(1,w)^2)}=smB_{{\mathcal{L}}_s(^2d_*(1,w)^2)}{\bigcup}extB_{{\mathcal{L}}_s(^2d_*(1,w)^2)}{\bigcup}A$$, where the set A consists of $ax_1x_2+by_1y_2+c(x_1y_2+x_2y_1)$ with (a = b = 0, $c={\pm}{\frac{1}{1+w^2}}$), ($a{\neq}b$, $ab{\geq}0$, c = 0), (a = b, 0 < ac, 0 < ${\mid}c{\mid}$ < ${\mid}a{\mid}$), ($a{\neq}{\mid}c{\mid}$, a = -b, 0 < ac, 0 < ${\mid}c{\mid}$), ($a={\frac{1-w}{1+w}}$, b = 0, $c={\frac{1}{1+w}}$), ($a={\frac{1+w+w(w^2-3)c}{1+w^2}}$, $b={\frac{w-1+(1-3w^2)c}{w(1+w^2)}}$, ${\frac{1}{2+2w}}$ < c < ${\frac{1}{(1+w)^2(1-w)}}$, $c{\neq}{\frac{1}{1+2w-w^2}}$), ($a={\frac{1+w(1+w)c}{1+w}}$, $b={\frac{-1+(1+w)c}{w(1+w)}}$, 0 < c < $\frac{1}{2+2w}$) or ($a={\frac{1=w(1+w)c}{1+w}}$, $b={\frac{1-(1+w)c}{1+w}}$, $\frac{1}{1+w}$ < c < $\frac{1}{(1+w)^2(1-w)}$).

BEST CONSTANT IN ZYGMUND'S INEQUALITY AND RELATED ESTIMATES FOR ORTHOGONAL HARMONIC FUNCTIONS AND MARTINGALES

  • Osekowski, Adam
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.3
    • /
    • pp.659-670
    • /
    • 2012
  • For any $K$ > $2/{\pi}$ we determine the optimal constant $L(K)$ for which the following holds. If $u$, $tilde{u}$ are conjugate harmonic functions on the unit disc with $\tilde{u}(0)=0$, then $$ {\int}_{-\pi}^{\pi}{\mid}\tilde{u}(e^{i\phi}){\mid}\frac{d{\phi}}{2{\pi}}{\leq}K{\int}_{-\pi}^{\pi}{\mid}u(e^{i{\phi}}){\mid}{\log}^+{\mid}u(e^{i{\phi}}){\mid}\frac{d{\phi}}{2{\pi}}+L(K).$$ We also establish a related estimate for orthogonal harmonic functions given on Euclidean domains as well as an extension concerning orthogonal martingales under differential subordination.

UPPER BOUNDS FOR THE AUTOCORRELATION COEEFFICIENTS OF THE RUDIN-SHAPIRO POLYNOMIALS

  • Taghavi, M
    • Journal of applied mathematics & informatics
    • /
    • v.4 no.1
    • /
    • pp.39-46
    • /
    • 1997
  • Given to be the $m^{th}$ correlation coefficient of the Rudin-Shapiro polynomials of degrees $2^n-1$, $$\mid$a_m$\mid$ \leq C(2^n)^{\frac{3}{4}}$ and there exists $\kappa \neq 0$ such that $$\mid$a_{\kappa}$\mid$ >D(2^n)^{0.73}$ (C and D are universal constants). Here we show that the 0.73 is optimal in the upper vound case.

SMALL DATA SCATTERING OF HARTREE TYPE FRACTIONAL SCHRÖDINGER EQUATIONS IN DIMENSION 2 AND 3

  • Cho, Yonggeun;Ozawa, Tohru
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.2
    • /
    • pp.373-390
    • /
    • 2018
  • In this paper we study the small-data scattering of the d dimensional fractional $Schr{\ddot{o}}dinger$ equations with d = 2, 3, $L{\acute{e}}vy$ index 1 < ${\alpha}$ < 2 and Hartree type nonlinearity $F(u)={\mu}({\mid}x{\mid}^{-{\gamma}}{\ast}{\mid}u{\mid}^2)u$ with max(${\alpha}$, ${\frac{2d}{2d-1}}$) < ${\gamma}{\leq}2$, ${\gamma}$ < d. This equation is scaling-critical in ${\dot{H}}^{s_c}$, $s_c={\frac{{\gamma}-{\alpha}}{2}}$. We show that the solution scatters in $H^{s,1}$ for any s > $s_c$, where $H^{s,1}$ is a space of Sobolev type taking in angular regularity with norm defined by ${\parallel}{\varphi}{\parallel}_{H^{s,1}}={\parallel}{\varphi}{\parallel}_{H^s}+{\parallel}{\nabla}_{{\mathbb{S}}{\varphi}}{\parallel}_{H^s}$. For this purpose we use the recently developed Strichartz estimate which is $L^2$-averaged on the unit sphere ${\mathbb{S}}^{d-1}$ and utilize $U^p-V^p$ space argument.