DOI QR코드

DOI QR Code

SMALL DATA SCATTERING OF HARTREE TYPE FRACTIONAL SCHRÖDINGER EQUATIONS IN DIMENSION 2 AND 3

  • Cho, Yonggeun (Department of Mathematics and Institute of Pure and Applied Mathematics Chonbuk National University) ;
  • Ozawa, Tohru (Department of Applied Physics Waseda University)
  • Received : 2017.04.02
  • Accepted : 2017.07.24
  • Published : 2018.03.01

Abstract

In this paper we study the small-data scattering of the d dimensional fractional $Schr{\ddot{o}}dinger$ equations with d = 2, 3, $L{\acute{e}}vy$ index 1 < ${\alpha}$ < 2 and Hartree type nonlinearity $F(u)={\mu}({\mid}x{\mid}^{-{\gamma}}{\ast}{\mid}u{\mid}^2)u$ with max(${\alpha}$, ${\frac{2d}{2d-1}}$) < ${\gamma}{\leq}2$, ${\gamma}$ < d. This equation is scaling-critical in ${\dot{H}}^{s_c}$, $s_c={\frac{{\gamma}-{\alpha}}{2}}$. We show that the solution scatters in $H^{s,1}$ for any s > $s_c$, where $H^{s,1}$ is a space of Sobolev type taking in angular regularity with norm defined by ${\parallel}{\varphi}{\parallel}_{H^{s,1}}={\parallel}{\varphi}{\parallel}_{H^s}+{\parallel}{\nabla}_{{\mathbb{S}}{\varphi}}{\parallel}_{H^s}$. For this purpose we use the recently developed Strichartz estimate which is $L^2$-averaged on the unit sphere ${\mathbb{S}}^{d-1}$ and utilize $U^p-V^p$ space argument.

Keywords

Acknowledgement

Supported by : Chonbuk National University

References

  1. Y. Cho, Short-range scattering of Hartree type fractional NLS, J. Differential Equations 262 (2017), no. 1, 116-144. https://doi.org/10.1016/j.jde.2016.09.025
  2. Y. Cho, H. Hajaiej, G. Hwang, and T. Ozawa, On the Cauchy problem of fractional Schrodinger equation with Hartree type nonlinearity, Funkacial. Ekvac. 56 (2013), no. 2, 193-224. https://doi.org/10.1619/fesi.56.193
  3. Y. Cho, G. Hwang, and T. Ozawa, On small data scattering of Hartree equations with short-range interaction, Commun. Pure Appl. Anal. 15 (2016), no. 5, 1809-1823. https://doi.org/10.3934/cpaa.2016016
  4. Y. Cho, G. Hwang, and T. Ozawa, Corrigendum to "On small data scattering of Hartree equations with shortrange interaction" [Comm. Pure Appl. Anal. 15 (5) (2016), 809-1823], Commun. Pure Appl. Anal. 16 (2017), no. 5, 1939-1940. https://doi.org/10.3934/cpaa.2017094
  5. Y. Cho, G. Hwang, and C. Yang, On the modified scattering of 3-d Hartree type fractional Schrodinger equations with Coulomb potential, in preprint.
  6. Y. Cho and S. Lee, Strichartz estimates in spherical coordinates, Indiana Univ. Math. J. 62 (2013), no. 3, 991-1020. https://doi.org/10.1512/iumj.2013.62.4970
  7. Y. Cho and K. Nakanishi, On the global existence of semirelativistic Hartree equations, Harmonic analysis and nonlinear partial differential equations, 145-166, RIMS Kkyroku Bessatsu, B22, Res. Inst. Math. Sci. (RIMS), Kyoto, 2010.
  8. Y. Cho and T. Ozawa, On the semirelativisitc Hartree-type equation, SIAM J. Math. Anal. 38 (2006), no. 4, 1060-1074. https://doi.org/10.1137/060653688
  9. Y. Cho and T. Ozawa, Short-range scattering of Hartree type fractional NLS II, Nonlinear Anal. 157 (2017), 62-75. https://doi.org/10.1016/j.na.2017.03.005
  10. Y. Cho, T. Ozawa, and S. Xia, Remarks on some dispersive estimates, Commun. Pure Appl. Anal. 10 (2011), no. 4, 1121-1128. https://doi.org/10.3934/cpaa.2011.10.1121
  11. T. Coulhon, E. Russ, and V. Tardivel-Nachef, Sobolev Algebras on Lie Groups and Riemannian Manifolds, Amer. J. Math. 123 (2001), no. 2, 283-342. https://doi.org/10.1353/ajm.2001.0009
  12. Z. Guo, Sharp spherically averaged Stichartz estimates for the Schrodinger equation, Nonlinearity 29 (2016), no. 5, 1668-1686. https://doi.org/10.1088/0951-7715/29/5/1668
  13. Z. Guo, Z. Hani, and K. Nakanishi, Scattering for the 3D Gross-Pitaevskii equation, in preprint (arXiv:1611.08320).
  14. M. Hadac, S. Herr, and H. Koch, Well-posedness and scattering for the KP-II equation in a critical space, Ann. Inst. H. Poincare Anal. Non Lineaire 26 (2009), no. 3, 917-941. https://doi.org/10.1016/j.anihpc.2008.04.002
  15. S. Herr and T. Tesfahun, Small data scattering for semi-relativistic equations with Hartree type nonlinearity, J. Differential Equations 259 (2015), no. 10, 5510-5532. https://doi.org/10.1016/j.jde.2015.06.037
  16. K. Kirkpatrick, E. Lenzmann, and G. Staffilani, On the continuum limit for discrete NLS with long-range lattice interactions, Comm. Math. Phys. 317 (2013), no. 3, 563-591. https://doi.org/10.1007/s00220-012-1621-x
  17. H. Koch, D. Tataru, and M. Visan, Dispersive Equations and Nonlinear Waves, Oberwolfach Seminars 45, 2014.
  18. N, Laskin, Fractional quantum mechanics and Levy path integrals, Phys. Lett. A 268 (2000), no. 4-6, 298-305. https://doi.org/10.1016/S0375-9601(00)00201-2
  19. C. Sulem and P. L. Sulem, The Nonlinear Schrodinger Equation, Self-focusing and Wave Collapse, Springer, 1993.
  20. H. Triebel, Spaces of Besov-Hardy-Sobolev type on complete Riemannian manifolds, Ark. Mat. 24 (1986), no. 2, 299-337.