References
- A. Barnes, On shear free normal ows of a perfect fluid, General Relativity and Gravitation 4 (1973), no. 2, 105-129. https://doi.org/10.1007/BF00762798
- J. K. Beem and P. E. Ehrlich, Global Lorentzian Geometry, Monographs and Textbooks in Pure and Applied Math., 67, Marcel Dekker, Inc., New York, 1981.
- R. R. Caldwell, M. Kaminonkowski, and N. N. Weinberg, Phantom energy and cosmic doomsday, arxiv:astro-ph/0302506v1.
- E. Cartan, Sur une classe remarquable d'espaces de Riemann, Bull. Soc. Math. France 54 (1926), 214-264.
- M. C. Chaki, On pseudosymmetric manifolds, An. Stiint. Univ. Al. I. Cuza Iasi Sect. I a Mat. 33 (1987), no. 1, 53-58.
- M. C. Chaki and S. Ray, Space-times with covariant-constant energy-momentum tensor, Internat. J. Theoret. Phys. 35 (1996), no. 5, 1027-1032. https://doi.org/10.1007/BF02302387
- M. C. Chaki and S. K. Saha, On pseudo-projective Ricci symmetric manifolds, Bulgar. J. Phys. 21 (1994), no. 1-2, 1-7.
- C. J. S. Clarke, Singularities: global and local aspects, in Topological properties and global structure of space-time (Erice, 1985), 61-71, NATO Adv. Sci. Inst. Ser. B Phys., 138, Plenum, New York, 1986.
- U. C. De and L. Velimirovic, Spacetimes with semisymmetric energy-momentum tensor, Internat. J. Theoret. Phys. 54 (2015), no. 6, 1779-1783. https://doi.org/10.1007/s10773-014-2381-5
- F. A. Ficken, The Riemannian and affine differential geometry of product-spaces, Ann. of Math. (2) 40 (1939), 892-913. https://doi.org/10.2307/1968900
- R. Geroch, Space-time structure from a global viewpoint, in General relativity and cosmology (Proc. Internat. School of Physics "Enrico Fermi", Italian Phys. Soc., Varenna, 1969), 71-103, Academic Press, New York, 1971.
- A. Gray, Einstein-like manifolds which are not Einstein, Geom. Dedicata 7 (1978), no. 3, 259-280. https://doi.org/10.1007/BF00151525
- S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space-Time, Cambridge University Press, London, 1973.
- P. S. Joshi, Global Aspects in Gravitation and Cosmology, International Series of Monographs on Physics, 87, The Clarendon Press, Oxford University Press, New York, 1993.
- S. Mallick and U. C. De, Spacetimes admitting W2-curvature tensor, Int. J. Geom. Methods Mod. Phys. 11 (2014), no. 4, 1450030, 8 pp. https://doi.org/10.1142/S0219887814500303
- C. A. Mantica and L. G. Molinari, Weakly Z-symmetric manifolds, Acta Math. Hungar. 135 (2012), no. 1-2, 80-96. https://doi.org/10.1007/s10474-011-0166-3
- C. A. Mantica and L. G. Molinari, Generalized Robertson-Walker spacetimes - a survey, Int. J. Geom. Methods Mod. Phys. 14 (2017), no. 3, 1730001, 27 pp. https://doi.org/10.1142/S021988781730001X
- C. A. Mantica, L. G. Molinari, and U. C. De, A condition for a perfect-fluid spacetime to be a generalized Robertson-Walker space-time, J. Math. Phys. 57 (2016), no. 2, 022508, 6 pp. https://doi.org/10.1063/1.4941942
- C. A. Mantica and Y. J. Suh, Pseudo-Z symmetric space-times, J. Math. Phys. 55 (2014), no. 4, 042502, 12 pp. https://doi.org/10.1063/1.4871442
- C. A. Mantica and Y. J. Suh, Pseudo Z symmetric Riemannian manifolds with harmonic curvature tensors, Int. J. Geom. Methods Mod. Phys. 9 (2012), no. 1, 1250004, 21 pp. https://doi.org/10.1142/S0219887812500041
- C. A. Mantica and Y. J. Suh, Recurrent Z forms on Riemannian and Kaehler manifolds, Int. J. Geom. Methods Mod. Phys. 9 (2012), no. 7, 1250059, 26 pp. https://doi.org/10.1142/S0219887812500594
- C. A. Mantica and Y. J. Suh, Pseudo-Q-symmetric Riemannian manifolds, Int. J. Geom. Methods Mod. Phys. 10 (2013), no. 5, 1350013, 25 pp. https://doi.org/10.1142/S0219887813500138
- C. A. Mantica, Y. J. Suh, and U. C. De, A note on generalized Robertson-Walker spacetimes, Int. J. Geom. Methods Mod. Phys. 13 (2016), no. 6, 1650079, 9 pp. https://doi.org/10.1142/S0219887816500791
- J. V. Narlikar, Lectures on general relativity and cosmology, Macmillan Co. of India, Ltd., New Delhi, 1979.
- B. O'Neill, Semi-Riemannian Geometry, Pure and Applied Mathematics, 103, Academic Press, Inc., New York, 1983.
- S. Ray, Certain investigations in relativity ans cosmology by differential geometric method, University of Kalyani, April,1999, 29 pp.
- S. K. Srivastava, General Relativity and Cosmology, Prentice-Hall of India Private Limited, New Delhi, 2008.
- H. Stephani, General Relativity, translated from the German by Martin Pollock and John Stewart, Cambridge University Press, Cambridge, 1982.
- F. Zengin, M-projectively flat spacetimes, Math. Rep. (Bucur.) 14(64) (2012), no. 4, 363-370.