• Title/Summary/Keyword: Einstein's field equation

Search Result 10, Processing Time 0.019 seconds

SOME GEOMETRIC RESULTS ON A PARTICULAR SOLUTION OF EINSTEIN'S EQUATION

  • Lee, Jong Woo
    • Korean Journal of Mathematics
    • /
    • v.18 no.1
    • /
    • pp.21-28
    • /
    • 2010
  • In the unified field theory(UFT), many works on the solutions of Einstein's equation have been published. The main goal in the present paper is to obtain some geometric results on a particular solution of Einstein's equation under some condition in even-dimensional UFT $X_n$.

A PARTICULAR SOLUTION OF THE EINSTEIN'S EQUATION IN EVEN-DIMENSIONAL UFT Xn

  • Lee, Jong Woo
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.23 no.2
    • /
    • pp.185-195
    • /
    • 2010
  • In the unified field theory(UFT), in order to find a solution of the Einstein's equation it is necessary and sufficient to study the torsion tensor. The main goal in the present paper is to obtain, using a given torsion tensor (3.1), the complete representation of a particular solution of the Einstein's equation in terms of the basic tensor $g_{{\lambda}{\nu}}$ in even-dimensional UFT $X_n$.

Super Quasi-Einstein Manifolds with Applications to General Relativity

  • Mallick, Sahanous
    • Kyungpook Mathematical Journal
    • /
    • v.58 no.2
    • /
    • pp.361-375
    • /
    • 2018
  • The object of the present paper is to study super quasi-Einstein manifolds. Some geometric properties of super quasi-Einstein manifolds have been studied. We also discuss $S(QE)_4$ spacetime with space-matter tensor and some properties related to it. Finally, we construct an example of a super quasi-Einstein spacetime.

AN EINSTEIN'S CONNECTION WITH ZERO TORSION VECTOR IN EVEN-DIMENSIONAL UFT Xn

  • Lee, Jong Woo
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.4
    • /
    • pp.869-881
    • /
    • 2011
  • The main goal in the present paper is to obtain a necessary and sufficient condition for a new connection with zero torsion vector to be an Einstein's connection and derive some useful representation of the vector defining the Einstein's connection in even-dimensional UFT $X_n$.

The 𝒲-curvature Tensor on Relativistic Space-times

  • Abu-Donia, Hassan;Shenawy, Sameh;Syied, Abdallah Abdelhameed
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.1
    • /
    • pp.185-195
    • /
    • 2020
  • This paper aims to study the 𝒲-curvature tensor on relativistic space-times. The energy-momentum tensor T of a space-time having a semi-symmetric 𝒲-curvature tensor is semi-symmetric, whereas the whereas the energy-momentum tensor T of a space-time having a divergence free 𝒲-curvature tensor is of Codazzi type. A space-time having a traceless 𝒲-curvature tensor is Einstein. A 𝒲-curvature flat space-time is Einstein. Perfect fluid space-times which admits 𝒲-curvature tensor are considered.

General Relativity and Modern Cosmology (일반상대성이론과 현대우주론)

  • Hwang, Jai-Chan
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.57.5-58
    • /
    • 2015
  • We describe relations between modern cosmology and general relativity in the historical context. We reveal some ironies imbedded in Einstein's final correction of his gravitational field equation in the context of cosmology in 1917 which has apparently opened a new era of modern physical cosmology. The ugly (according to Einstein) correction term was introduced only to build a static cosmology which turns out to be in flat contradiction with observation. Somehow, however, it is the correction term which has saved the modern cosmology from the genuine creativity of nature continuously revealed by astronomical observations. Whether the present precision cosmology is also a correct one is often ignored by the practitioners but still a pressing open question left for future theoretical and observational pursuits.

  • PDF

3-Dimensional Trans-Sasakian Manifolds with Gradient Generalized Quasi-Yamabe and Quasi-Yamabe Metrics

  • Siddiqi, Mohammed Danish;Chaubey, Sudhakar Kumar;Ramandi, Ghodratallah Fasihi
    • Kyungpook Mathematical Journal
    • /
    • v.61 no.3
    • /
    • pp.645-660
    • /
    • 2021
  • This paper examines the behavior of a 3-dimensional trans-Sasakian manifold equipped with a gradient generalized quasi-Yamabe soliton. In particular, It is shown that α-Sasakian, β-Kenmotsu and cosymplectic manifolds satisfy the gradient generalized quasi-Yamabe soliton equation. Furthermore, in the particular case when the potential vector field ζ of the quasi-Yamabe soliton is of gradient type ζ = grad(ψ), we derive a Poisson's equation from the quasi-Yamabe soliton equation. Also, we study harmonic aspects of quasi-Yamabe solitons on 3-dimensional trans-Sasakian manifolds sharing a harmonic potential function ψ. Finally, we observe that 3-dimensional compact trans-Sasakian manifold admits the gradient generalized almost quasi-Yamabe soliton with Hodge-de Rham potential ψ. This research ends with few examples of quasi-Yamabe solitons on 3-dimensional trans-Sasakian manifolds.

PSEUDO PROJECTIVE RICCI SYMMETRIC SPACETIMES

  • De, Uday Chand;Majhi, Pradip;Mallick, Sahanous
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.2
    • /
    • pp.571-580
    • /
    • 2018
  • The object of the present paper is to prove the non-existence of pseudo projective Ricci symmetric spacetimes $(PW\;RS)_4$ with different types of energy momentum tensor. We also discuss whether a fluid $(PW\;RS)_4$ spacetime with the basic vector field as the velocity vector field of the fluid can admit heat flux. Next we consider perfect fluid and dust fluid $(PW\;RS)_4$ spacetimes respectively. Finally we construct an example of a $(PW\;RS)_4$ spacetime.

ON PSEUDO SEMI-PROJECTIVE SYMMETRIC MANIFOLDS

  • De, Uday Chand;Majhi, Pradip
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.2
    • /
    • pp.391-413
    • /
    • 2018
  • In this paper we introduce a new tensor named semi-projective curvature tensor which generalizes the projective curvature tensor. First we deduce some basic geometric properties of semi-projective curvature tensor. Then we study pseudo semi-projective symmetric manifolds $(PSPS)_n$ which recover some known results of Chaki [5]. We provide several interesting results. Among others we prove that in a $(PSPS)_n$ if the associated vector field ${\rho}$ is a unit parallel vector field, then either the manifold reduces to a pseudosymmetric manifold or pseudo projective symmetric manifold. Moreover we deal with semi-projectively flat perfect fluid and dust fluid spacetimes respectively. As a consequence we obtain some important theorems. Next we consider the decomposability of $(PSPS)_n$. Finally, we construct a non-trivial Lorentzian metric of $(PSPS)_4$.

ON THE *g-ME-CONNECTION AND THE *g-ME-VECTOR IN *g-MEXn

  • Yoo, Ki-Jo
    • Honam Mathematical Journal
    • /
    • v.30 no.4
    • /
    • pp.603-616
    • /
    • 2008
  • A generalized n-dimensional Riemannian manifold $X_n$ on which the differential geometric structure is imposed by the unified field tensor $^*g^{{\lambda}{\nu}}$, satisfying certain conditions, through the $^*g$-ME-connection which is both Einstein's equation and of the form(3.1) is called $^*g$-ME-manifold and we denote it by $^*g-MEX_n$. In this paper, we prove a necessary and sufficient condition for the existence of $^*g$-ME-connection and derive a surveyable tensorial representation of the $^*g$-ME-connection and the $^*g$-ME-vector in $^*g-MEX_n$.