• Title/Summary/Keyword: 3D spatial data

Search Result 854, Processing Time 0.031 seconds

Spatiotemporal Routing Analysis for Emergency Response in Indoor Space

  • Lee, Jiyeong;Kwan, Mei-Po
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.6
    • /
    • pp.637-650
    • /
    • 2014
  • Geospatial research on emergency response in multi-level micro-spatial environments (e.g., multi-story buildings) that aims at understanding and analyzing human movements at the micro level has increased considerably since 9/11. Past research has shown that reducing the time rescuers needed to reach a disaster site within a building (e.g., a particular room) can have a significant impact on evacuation and rescue outcomes in this kind of disaster situations. With the purpose developing emergency response systems that are capable of using complex real-time geospatial information to generate fast-changing scenarios, this study develops a Spatiotemporal Optimal Route Algorithm (SORA) for guiding rescuers to move quickly from various entrances of a building to the disaster site (room) within the building. It identifies the optimal route and building evacuation bottlenecks within the network in real-time emergency situations. It is integrated with a Ubiquitous Sensor Network (USN) based tracking system in order to monitor dynamic geospatial entities, including the dynamic capacities and flow rates of hallways per time period. Because of the limited scope of this study, the simulated data were used to implement the SORA and evaluate its effectiveness for performing 3D topological analysis. The study shows that capabilities to take into account detailed dynamic geospatial data about emergency situations, including changes in evacuation status over time, are essential for emergency response systems.

A Study on Airborne LiDAR System Calibration and Accuracy Evaluation (항공LiDAR 시스템 검정 및 정확도 평가 연구)

  • Choi, Yun-Soo;Kong, In-Ku;Lee, Kang-Won
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.23 no.4
    • /
    • pp.359-366
    • /
    • 2005
  • Airborne LiDAR integrated with on-board GPS/INS and scanning technology is a state-of the-art system for direct 3D geo-spatial data acquisition. In this study, LiDAR data were calibrated using ground points in calibration site for the higher system accuracy. The accuracy results are ${\pm}15{\sim}30\;cm$ in horizontal and ${\pm}15\;cm$ in vertical. The results show that LiDAR system has capability for precise DEM and contour generation, 3D urban modeling and engineering design.

The Application of Geospatial Information Acquisition Technique and Civil-BIM for Site Selection (지형공간정보취득기술과 토목BIM을 활용한 부지선정 연구)

  • Moon, Su-Jung;Pyeon, Mu-Wook;Park, Hong-Gi;Ji, Jang-Hun;Jo, Jun-Ho
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.6
    • /
    • pp.579-586
    • /
    • 2010
  • Due to the recent development of measuring technology and 3D programs, it has become possible to obtain various spatial data. This study utilizes the 2-dimensional data and 3-dimensional data extraction technology based on the existing empirical and statistical DB. The data obtained from geospatial data technology are integrated with civil engineering BIM to conduct the modeling of the topography of the target region and select the optimum location condition by using the cut and fill balance of the volume of earth. The target area is the land around Tamjin River, Jangheong-gun, Jeolla-do. The 3-dimensional topology linked with 3-dimensional mapping technology by using the orth-image and aerial LiDAR that uses aerial photo of the target area is visualized with Civil3D of AutoDesk. By using Civil3D program, the Thanks to the recent development of measuring technology and 3D programs, target area is analyzed through visualization and related data can be obtained for analysis. The method of using civil engineering BIM enables to obtain various and accurate information about the target area which is helpful for addressing the issues risen from the existing methodology. In this regard, it aims at searching for the alternatives and provides suggestions to utilize the information.

Power based scheduling for Collaborative MIMO system (Collaborative MIMO 시스템을 위한 전력기반 스케줄링 방식)

  • Kim, Young-Joon;Lee, Jung-Seung;Baik, Doo-Kwon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.12A
    • /
    • pp.1209-1216
    • /
    • 2008
  • In order to maximize spectrum efficiency and data rate MIMO(Multiple Input Multiple Output) is adopted to wireless system. OFDM-based WiMAX and LTE accommodate MIMO as mandatory technology. STC(Space Time Coding) and SM(Spatial Multiplexing) are used in downlink while in uplink C-MIMO(Collaborative MIMO) is used to improve data throughput. In this paper conventional pairing schemes, RPS(Random Pairing Scheduling) and DPS(Determinant Pairing Scheduling) are analyzed. From the analysis the performance of DPS algorithm is better than that of RPS because DPS measures orthogonal factor between paired users. However, there are potential problems such as hardware complexity and performance. To overcome the issues Power-Based Scheduling(PBS) algorithm is proposed for C-MIMO. PBS can provide higher performance compared to RPS and dramatically reduce hardware complexity compared to DPS

A study on the debelopment of the Ultrasonic imaging system for tissue characterization (조직의 정량화를 위한 초음파 영상시스템의 개발에 관한 연구)

  • Choe, Jong-Ho;Choe, Jong-Su
    • The Journal of the Acoustical Society of Korea
    • /
    • v.6 no.3
    • /
    • pp.31-42
    • /
    • 1987
  • An ultrasonic pulse-echo diagnostic system for tissue characterization with the estimation of attenuation coefficients is developed and its performance has been examined by system implementation. The system divided into the ultrasonic generator, A/D converter, data communication, computer for signal processing. The methods for estimating the spatial distribution of acoustic attenuation coefficients using the moment analysis are proposed. The experimental results indicate the potential of the methods for tissue characterization.

  • PDF

Photorealistic Building Modelling and Visualization in 3D GIS (3차원 GIS의 현실감 부여 빌딩 모델링 및 시각화에 관한 연구)

  • Song, Yong Hak;Sohn, Hong Gyoo;Yun, Kong Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2D
    • /
    • pp.311-316
    • /
    • 2006
  • Despite geospatial information systems are widely used in many different fields as a powerful tool for spatial analysis and decision-making, their capabilities to handle realistic 3-D urban environment are very limited. The objective of this work is to integrate the recent developments in 3-D modeling and visualization into GIS to enhance its 3-D capabilities. To achieve a photorealistic view, building models are collected from a pair of aerial stereo images. Roof and wall textures are respectively obtained from ortho-rectified aerial image and ground photography. This study is implemented by using ArcGIS as the work platform and ArcObjects and Visual Basic as development tools. Presented in this paper are 3-D geometric modeling and its data structure, texture creation and its association with the geometric model. As the results, photorealistic views of Purdue University campus are created and rendered with ArcScene.

A Case Study of Developing a Subsurface Information and Visualization System Using ArcView (ArcView를 이용한 지하 정보 및 시각화 시스템 구축 사례 연구)

  • Kim, Hyeon-Gyu;Lee, Doo-Sung
    • Geophysics and Geophysical Exploration
    • /
    • v.4 no.4
    • /
    • pp.101-109
    • /
    • 2001
  • In order to develop a spatial information system that can efficiently manage various subsurface data and produce information in a proper form for a user, we established a database of the well cores and built 3-D shapes that visualize the subsurface objects such as wells, ore bodies, tunnels, and mine cavities. We also made analysis tools available for three-dimensional ore bodies constructed here, such as vertical cross-section generator and mass computing tool. This system was developed by coding Avenue, a scripting language incorporated in ArcView, which is a commercial GIS software. Using the system, it is expected that users can make fast and accurate analysis and interpretation through real-time queries and by contemplating various objects in 3-D perspective.

  • PDF

Development of Three Dimensional Scanner for Anthropometric Measurement (인체측정용 3차원 스캐너 제작)

  • Kim, Min-Hyo;Nam, Yun-Ja
    • Journal of the Ergonomics Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.77-88
    • /
    • 2001
  • A three dimensional body scanner for anthropomentric measurement has been developed. In this study, the slit laser beam projection method followed by digital image processing was used to provide accurate spatial data with the typical optical triangulation method to overcome the many difficulties in traditional in accurate and time-consuming tactic measurement method using rulers and gauges. Compared with other commercialized scanners. this system can obtain a relatively wide range of data at a much lower cost by the specially designed scanning process such as the simultaneous acquisition of vertical and horizontal body cross-section profiles.

  • PDF

Performance Characteristics of 3D GSO PET/CT Scanner (Philips GEMINI PET/DT) (3차원 GSO PET/CT 스캐너(Philips GEMINI PET/CT의 특성 평가)

  • Kim, Jin-Su;Lee, Jae-Sung;Lee, Byeong-Il;Lee, Dong-Soo;Chung, June-Key;Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.4
    • /
    • pp.318-324
    • /
    • 2004
  • Purpose: Philips GEMINI is a newly introduced whole-body GSO PET/CT scanner. In this study, performance of the scanner including spatial resolution, sensitivity, scatter fraction, noise equivalent count ratio (NECR) was measured utilizing NEMA NU2-2001 standard protocol and compared with performance of LSO, BGO crystal scanner. Methods: GEMINI is composed of the Philips ALLEGRO PET and MX8000 D multi-slice CT scanners. The PET scanner has 28 detector segments which have an array of 29 by 22 GSO crystals ($4{\times}6{\times}20$ mm), covering axial FOV of 18 cm. PET data to measure spatial resolution, sensitivity, scatter fraction, and NECR were acquired in 3D mode according to the NEMA NU2 protocols (coincidence window: 8 ns, energy window: $409[\sim}664$ keV). For the measurement of spatial resolution, images were reconstructed with FBP using ramp filter and an iterative reconstruction algorithm, 3D RAMLA. Data for sensitivity measurement were acquired using NEMA sensitivity phantom filled with F-18 solution and surrounded by $1{\sim}5$ aluminum sleeves after we confirmed that dead time loss did not exceed 1%. To measure NECR and scatter fraction, 1110 MBq of F-18 solution was injected into a NEMA scatter phantom with a length of 70 cm and dynamic scan with 20-min frame duration was acquired for 7 half-lives. Oblique sinograms were collapsed into transaxial slices using single slice rebinning method, and true to background (scatter+random) ratio for each slice and frame was estimated. Scatter fraction was determined by averaging the true to background ratio of last 3 frames in which the dead time loss was below 1%. Results: Transverse and axial resolutions at 1cm radius were (1) 5.3 and 6.5 mm (FBP), (2) 5.1 and 5.9 mm (3D RAMLA). Transverse radial, transverse tangential, and axial resolution at 10 cm were (1) 5.7, 5.7, and 7.0 mm (FBP), (2) 5.4, 5.4, and 6.4 mm (3D RAMLA). Attenuation free values of sensitivity were 3,620 counts/sec/MBq at the center of transaxial FOV and 4,324 counts/sec/MBq at 10 cm offset from the center. Scatter fraction was 40.6%, and peak true count rate and NECR were 88.9 kcps @ 12.9 kBq/mL and 34.3 kcps @ 8.84 kBq/mL. These characteristics are better than that of ECAT EXACT PET scanner with BGO crystal. Conclusion: The results of this field test demonstrate high resolution, sensitivity and count rate performance of the 3D PET/CT scanner with GSO crystal. The data provided here will be useful for the comparative study with other 3D PET/CT scanners using BGO or LSO crystals.

Effective Application of Digital Photogrammetry using Local Terrain Model (국부지형모형을 이용한 수치사진측량의 효율적 적용)

  • 박운용;김정희;문두열;정공운
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.10a
    • /
    • pp.199-204
    • /
    • 2003
  • Digital high resolution cameras are widely available, and are increasingly use in digital close-range photogrammetry. And photogrammetry instruments are developing rapidly and the precision is improving continuously, The building of 3D terrains of high precision are possible and the calculation of the areas or the earthwork volumes have high precision due to the development of the technique of the spatial information system using computer, In this study, using the digital camera which has capacity of keeping numerical value by itself and easy carrying, we analyze the positioning error according to various change of photographing condition. Also we t]v to find a effective method of acquiring basis data for 3D monitoring of high-accuracy in pixel degree through digital close-range photogrammetry with bundle adjustment for local terrain model generation and earthwork volume.

  • PDF