CCTV는 위험 상황을 파악하고 신속히 대응함으로써, 인명과 자산을 안전하게 보호한다. 하지만, 점점 많아지는 CCTV 영상을 지속적으로 모니터링하기는 어렵다. 이런 이유로 CCTV 영상을 지속적으로 모니터링하면서 이상행동이 발생했을 때 알려주는 장치가 필요하다. 최근 영상데이터 분석에 인공지능 모델을 활용한 많은 연구가 이루어지고 있다. 본 연구는 CCTV 영상에서 관측할 수 있는 다양한 이상 행동을 분류하기 위해 영상데이터 사이의 공간적, 시간적 특성 정보를 동시에 학습한다. 학습에 이용되는 인공지능 모델로 End-to-End 방식의 3D-Convolution Neural Network(CNN)와 ResNet을 결합한 다중 분류 딥러닝 모델을 제안한다.
Rian Kang;Soomin Park;Saewoon Shin;Gyusoo Bak;Jong-Chan Park
BMB Reports
/
제57권7호
/
pp.311-317
/
2024
Brain organoid is a three-dimensional (3D) tissue derived from stem cells such as induced pluripotent stem cells (iPSCs) embryonic stem cells (ESCs) that reflect real human brain structure. It replicates the complexity and development of the human brain, enabling studies of the human brain in vitro. With emerging technologies, its application is various, including disease modeling and drug screening. A variety of experimental methods have been used to study structural and molecular characteristics of brain organoids. However, electrophysiological analysis is necessary to understand their functional characteristics and complexity. Although electrophysiological approaches have rapidly advanced for monolayered cells, there are some limitations in studying electrophysiological and neural network characteristics due to the lack of 3D characteristics. Herein, electrophysiological measurement and analytical methods related to neural complexity and 3D characteristics of brain organoids are reviewed. Overall, electrophysiological understanding of brain organoids allows us to overcome limitations of monolayer in vitro cell culture models, providing deep insights into the neural network complex of the real human brain and new ways of disease modeling.
그래프 시각화 이론에 근간을 둔 네트워크 토폴로지 시각화는 복잡한 네트워크의 전체 구조와 노드간의 상호작용을 보다 이해하기 쉽게 만든다. 네트워크 토폴로지를 시각화하는 도구는 과거부터 많이 개발되었지만, 일정 수준의 기능을 갖춘 도구들은 도구마다 고유한 네트워크 구성 정보(노드의 식별자, 종류, 속성, 연결된 노드 등)를 입력으로 요구하기 때문에 범용적으로 사용하기 어렵다. 반면에 최소한의 네트워크 구성 정보인 노드간의 연결만을 사용하는 도구들은 네트워크의 실제 연결 형태를 표시하는 기능이 부족하다. 본 논문에서는 네트워크 노드간의 연결 정보만을 이용하여 토폴로지를 시각화하는 효율적인 방법을 제안한다. 이 방법은 네트워크에서 노드의 영향력을 나타내는 중심성 지수를 활용하여 중심노드를 찾고, 자식노드의 가중치를 이용하여 전체 노드들의 표시 영역을 동적 분할한 후 3D 공간 상에 노드들을 배치함으로써 토폴로지를 시각화한다. 매우 간단한 방법이지만 노드간의 연결 정보만으로 실제 네트워크 연결 형태를 시각화할 수 있다.
원격 및 가상환경에서 사용자의 동작에 따른 3D 모델을 제공하기 위해 light detection and range (LiDAR)로 측정된 3D point cloud로 사용자의 3D 모델이 생성되어 원격 및 가상환경에 사용자의 모습이 제공된다. 하지만 3D 모델을 생성하기 위해서는 사용자의 신체 전부가 측정된 3D point cloud가 필요하다. 사용자의 신체 전체를 측정하기 위해서는 적어도 두 개 이상의 LiDAR가 필요하다. 두 개 이상의 LiDAR을 사용할 경우에는 LiDAR을 사용할 공간과 LiDAR를 구비하기 위한 비용이 발생한다. 단일 LiDAR로 3D 모델을 생성하는 방법이 요구된다. 본 논문에서는 단일 LiDAR에서 측정된 3D point cloud를 이용하여 3D 모델을 생성하는 방법이 제안된다. End-to-End 기반 Convolutional Neural Network (CNN) 모델로 측정된 3D point cloud를 분석하여 사용자의 체형과 자세를 예측하도록 학습한다. 기본자세를 취하는 동안 수집된 3D point cloud로 기본이 되는 사용자의 3D 모델을 생성한다. 학습된 CNN 모델을 통하여 측정된 3D point cloud로 사용자의 자세를 예측하여 기본이 되는 3D 모델을 수정하여 3D 모델을 제공한다.
본 논문에서는 다중입력-다중출력(multiple-input, multiple-output: MIMO) 간섭계(interferometric) 레이다 네트워크 시스템을 기반한 MIMO 간섭계 역합성 개구면 레이다(inverse synthetic aparture radar: InISAR) 영상 형성기법에 관해 연구하였다. MIMO 간섭계 레이다 네트워크 시스템 내에서는 여러 바이스태틱 InISAR 영상들이 형성되며, 이들을 인코히리언트(incoherent)하게 합성함으로써 MIMO InISAR 영상을 형성할 수 있다. 여기서, 바이스태틱 InISAR 영상은 바이스태틱 기하구조 내에서의 표적에 대한 산란분포를 3차원의 형태로 도시한다. 상기 MIMO InISAR 영상에서는 다중 각도에서의 바이스태틱 산란 현상을 3차원의 형태로 도시하기 때문에, 표적의 다양한 산란 정보를 제공함과 더불어, 표적 식별 시 유용한 특징 벡터(feature vector)로써 활용될 수 있다. 시뮬레이션을 통해, 제안된 MIMO InISAR 영상 형성 기법을 이용함으로써 표적에 대한 다중각도에서의 바이스태틱 산란분포가 3차원의 형태로 도시되는 것을 확인할 수 있다.
International Journal of Computer Science & Network Security
/
제22권12호
/
pp.51-56
/
2022
In space based constellation network, users are allowed to enter or leave the network arbitrarily. Hence, the number, identities and transmitted data of active users vary with time and have considerable impacts on the receiver's performance. The so-called problem of multiuser detection means identifying the identity of each active user and detecting the data transmitted by each active user. Traditional methods assume that the number of active users is equal to the maximum number of users that the network can hold. The model of traditional methods are simple and the performance are suboptimal. In this paper a Maximum A Posteriori Probability (MAP) based multiuser detection method is proposed. The proposed method models the activity state of users as Markov chain and transforms multiuser detection into searching optimal path in grid map with BCJR algorithm. Simulation results indicate that the proposed method obtains 2.6dB and 1dB Eb/N0 gains respectively when activity detection error rate and symbol error rate reach 10-3, comparing with reference methods.
ATSC 3.0 is a next-generation terrestrial broadcasting standard that provides various functions and improved performance compared to the existing ATSC 1.0 High Definition standard. Based on the ATSC 3.0 broadcast system with IP-centric transport and coherence, it can provide personalized and personalized interactive services to TV viewers. However, the broadcasting system still has a structural limitation in that the service is deployed separately from broadcasters who are allocated a specific frequency and is expected to have different spectrum allocation for each market. To overcome this structural limitation and provide improved services compared with the current ATSC 3.0, preliminary studies were conducted to apply the core network concept of a communication network (particularly 5G) to ATSC 3.0 broadcasting. Finally, in february of this year, the ATSC TG3/S43 group for the development of the ATSC 3.0 Broadcast Core Network (BCN) standard was launched. This paper describes the background and current status of BCN standardization by ATSC TG3/S43, and future standardization prospects.
The hippocampal volume atrophy is known to be linked with neuro-degenerative disorders and it is also one of the most important early biomarkers for Alzheimer's disease detection. The measurements of hippocampal pure volumes from Magnetic Resonance Imaging (MRI) is a crucial task and state-of-the-art methods require a large amount of time. In addition, the structural brain development is investigated using MRI data, where brain morphometry (e.g. cortical thickness, volume, surface area etc.) study is one of the significant parts of the analysis. In this study, we have proposed a patch-based ensemble model of 3-D convolutional neural network (CNN) to measure the hippocampal pure volume from MRI data. The 3-D patches were extracted from the volumetric MRI scans to train the proposed 3-D CNN models. The trained models are used to construct the ensemble 3-D CNN model and the aggregated model predicts the pure volume in one-step in the test phase. Our approach takes only 5 seconds to estimate the volumes from an MRI scan. The average errors for the proposed ensemble 3-D CNN model are 11.7±8.8 (error%±STD) and 12.5±12.8 (error%±STD) for the left and right hippocampi of 65 test MRI scans, respectively. The quantitative study on the predicted volumes over the ground truth volumes shows that the proposed approach can be used as a proxy.
최근 등장한 TSV(Through Silicon Via)기반의 3D 적층 기술은 보다 강력한 발열관리 기법을 필요로 하며 냉각 비용과 폼팩터(form factor)의 제한을 고려했을 때 소프트웨어적인 열관리 기법의 중요성이 더욱 강조되고 있다. 이러한 접근 방식의 유력한 후보 중 하나로 제시되었던 스로틀링을 통한 열관리 기법의 경우, 증가하는 버스 점유율로 인해 전체적인 성능저하를 야기하는 문제점이 있다. 본 논문에서는 향후 TSV 기반 3D SoC의 커뮤니케이션 병목 현상을 해결하기 위한 3D 네트워크-온-칩 (Network-on-Chip, NoC) 구조에서 어댑티브 스로틀링 기법을 제안하여, 열관리와 더불어 온-칩 네트워크상의 트래픽 감소를 통해 전체적인 성능향상을 목표로 한다. 본 논문에서는 실험을 통하여 기존의 방식에 비하여 스로틀링으로 인해 저하된 처리량이 최소경로 라우팅 시 최대 72% 향상됨을 알 수 있었다.
본 논문은 비디오로부터 추출한 프레임으로부터 3차원 인체 형상과 자세 복원을 수행하고 이를 시간 축에서 자연스럽고 부드러운 움직임을 나타내도록 보정하는 기법을 제안한다. 제안하는 기법은 우선 비디오로부터 추출한 개별 프레임으로부터 convolutional neural network을 이용하여 관절의 위치와 인체의 윤곽을 추정한다. 인체의 형상 및 자세는 매개변수 기반의 3차원 변형가능 모델(morphable model)을 2차원 영상으로 투영후 정합하여 최적의 매개변수 값을 추정한다. 이 때 각 프레임에 대한 복원이 개별적으로 수행되면 시간 축에서 자세의 연속성과 체형의 일관성이 보장되지 못하고 올바르지 못한 복원 결과가 나타난다. 제안하는 기법은 이러한 문제점을 보완하기 위하여 각 프레임으로부터 복원된 3차원 변형가능 모델의 주성분 매개변수의 분석 및 보간을 수행한다. 실험결과 3차원 인체 복원에 오류가 발생한 프레임에 대해 이전과 이후 프레임들 사이의 관계를 통해 오류가 보정되어 개선된 복원 결과를 얻을 수 있음을 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.