• 제목/요약/키워드: 3D network

검색결과 2,107건 처리시간 0.032초

CCTV 영상의 이상행동 다중 분류를 위한 결합 인공지능 모델에 관한 연구 (A Study on Combine Artificial Intelligence Models for multi-classification for an Abnormal Behaviors in CCTV images)

  • 이홍래;김영태;서병석
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.498-500
    • /
    • 2022
  • CCTV는 위험 상황을 파악하고 신속히 대응함으로써, 인명과 자산을 안전하게 보호한다. 하지만, 점점 많아지는 CCTV 영상을 지속적으로 모니터링하기는 어렵다. 이런 이유로 CCTV 영상을 지속적으로 모니터링하면서 이상행동이 발생했을 때 알려주는 장치가 필요하다. 최근 영상데이터 분석에 인공지능 모델을 활용한 많은 연구가 이루어지고 있다. 본 연구는 CCTV 영상에서 관측할 수 있는 다양한 이상 행동을 분류하기 위해 영상데이터 사이의 공간적, 시간적 특성 정보를 동시에 학습한다. 학습에 이용되는 인공지능 모델로 End-to-End 방식의 3D-Convolution Neural Network(CNN)와 ResNet을 결합한 다중 분류 딥러닝 모델을 제안한다.

  • PDF

Electrophysiological insights with brain organoid models: a brief review

  • Rian Kang;Soomin Park;Saewoon Shin;Gyusoo Bak;Jong-Chan Park
    • BMB Reports
    • /
    • 제57권7호
    • /
    • pp.311-317
    • /
    • 2024
  • Brain organoid is a three-dimensional (3D) tissue derived from stem cells such as induced pluripotent stem cells (iPSCs) embryonic stem cells (ESCs) that reflect real human brain structure. It replicates the complexity and development of the human brain, enabling studies of the human brain in vitro. With emerging technologies, its application is various, including disease modeling and drug screening. A variety of experimental methods have been used to study structural and molecular characteristics of brain organoids. However, electrophysiological analysis is necessary to understand their functional characteristics and complexity. Although electrophysiological approaches have rapidly advanced for monolayered cells, there are some limitations in studying electrophysiological and neural network characteristics due to the lack of 3D characteristics. Herein, electrophysiological measurement and analytical methods related to neural complexity and 3D characteristics of brain organoids are reviewed. Overall, electrophysiological understanding of brain organoids allows us to overcome limitations of monolayer in vitro cell culture models, providing deep insights into the neural network complex of the real human brain and new ways of disease modeling.

노드 중심성을 이용한 효율적 네트워크 토폴로지 시각화 연구 (A Study on Efficient Network Topology Visualization using Node Centrality)

  • 장범환;류제민;권구형
    • 융합보안논문지
    • /
    • 제21권2호
    • /
    • pp.47-56
    • /
    • 2021
  • 그래프 시각화 이론에 근간을 둔 네트워크 토폴로지 시각화는 복잡한 네트워크의 전체 구조와 노드간의 상호작용을 보다 이해하기 쉽게 만든다. 네트워크 토폴로지를 시각화하는 도구는 과거부터 많이 개발되었지만, 일정 수준의 기능을 갖춘 도구들은 도구마다 고유한 네트워크 구성 정보(노드의 식별자, 종류, 속성, 연결된 노드 등)를 입력으로 요구하기 때문에 범용적으로 사용하기 어렵다. 반면에 최소한의 네트워크 구성 정보인 노드간의 연결만을 사용하는 도구들은 네트워크의 실제 연결 형태를 표시하는 기능이 부족하다. 본 논문에서는 네트워크 노드간의 연결 정보만을 이용하여 토폴로지를 시각화하는 효율적인 방법을 제안한다. 이 방법은 네트워크에서 노드의 영향력을 나타내는 중심성 지수를 활용하여 중심노드를 찾고, 자식노드의 가중치를 이용하여 전체 노드들의 표시 영역을 동적 분할한 후 3D 공간 상에 노드들을 배치함으로써 토폴로지를 시각화한다. 매우 간단한 방법이지만 노드간의 연결 정보만으로 실제 네트워크 연결 형태를 시각화할 수 있다.

단일 LiDAR를 활용한 End-to-End 기반 3D 모델 생성 방법 (End-to-End based 3D Model Generation Method using a Single LiDAR)

  • 곽정훈;성연식
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 춘계학술발표대회
    • /
    • pp.532-533
    • /
    • 2020
  • 원격 및 가상환경에서 사용자의 동작에 따른 3D 모델을 제공하기 위해 light detection and range (LiDAR)로 측정된 3D point cloud로 사용자의 3D 모델이 생성되어 원격 및 가상환경에 사용자의 모습이 제공된다. 하지만 3D 모델을 생성하기 위해서는 사용자의 신체 전부가 측정된 3D point cloud가 필요하다. 사용자의 신체 전체를 측정하기 위해서는 적어도 두 개 이상의 LiDAR가 필요하다. 두 개 이상의 LiDAR을 사용할 경우에는 LiDAR을 사용할 공간과 LiDAR를 구비하기 위한 비용이 발생한다. 단일 LiDAR로 3D 모델을 생성하는 방법이 요구된다. 본 논문에서는 단일 LiDAR에서 측정된 3D point cloud를 이용하여 3D 모델을 생성하는 방법이 제안된다. End-to-End 기반 Convolutional Neural Network (CNN) 모델로 측정된 3D point cloud를 분석하여 사용자의 체형과 자세를 예측하도록 학습한다. 기본자세를 취하는 동안 수집된 3D point cloud로 기본이 되는 사용자의 3D 모델을 생성한다. 학습된 CNN 모델을 통하여 측정된 3D point cloud로 사용자의 자세를 예측하여 기본이 되는 3D 모델을 수정하여 3D 모델을 제공한다.

3차원 Multiple-Input Multiple-Output 간섭계 ISAR 영상형성기법 (3-D Multiple-Input Multiple-Output Interferometric ISAR Imaging)

  • 강병수;배지훈;양은정;김경태
    • 한국전자파학회논문지
    • /
    • 제26권6호
    • /
    • pp.564-571
    • /
    • 2015
  • 본 논문에서는 다중입력-다중출력(multiple-input, multiple-output: MIMO) 간섭계(interferometric) 레이다 네트워크 시스템을 기반한 MIMO 간섭계 역합성 개구면 레이다(inverse synthetic aparture radar: InISAR) 영상 형성기법에 관해 연구하였다. MIMO 간섭계 레이다 네트워크 시스템 내에서는 여러 바이스태틱 InISAR 영상들이 형성되며, 이들을 인코히리언트(incoherent)하게 합성함으로써 MIMO InISAR 영상을 형성할 수 있다. 여기서, 바이스태틱 InISAR 영상은 바이스태틱 기하구조 내에서의 표적에 대한 산란분포를 3차원의 형태로 도시한다. 상기 MIMO InISAR 영상에서는 다중 각도에서의 바이스태틱 산란 현상을 3차원의 형태로 도시하기 때문에, 표적의 다양한 산란 정보를 제공함과 더불어, 표적 식별 시 유용한 특징 벡터(feature vector)로써 활용될 수 있다. 시뮬레이션을 통해, 제안된 MIMO InISAR 영상 형성 기법을 이용함으로써 표적에 대한 다중각도에서의 바이스태틱 산란분포가 3차원의 형태로 도시되는 것을 확인할 수 있다.

A Maximum A Posterior Probability based Multiuser Detection Method in Space based Constellation Network

  • Kenan, Zhang;Xingqian, Li;Kai, Ding;Li, Li
    • International Journal of Computer Science & Network Security
    • /
    • 제22권12호
    • /
    • pp.51-56
    • /
    • 2022
  • In space based constellation network, users are allowed to enter or leave the network arbitrarily. Hence, the number, identities and transmitted data of active users vary with time and have considerable impacts on the receiver's performance. The so-called problem of multiuser detection means identifying the identity of each active user and detecting the data transmitted by each active user. Traditional methods assume that the number of active users is equal to the maximum number of users that the network can hold. The model of traditional methods are simple and the performance are suboptimal. In this paper a Maximum A Posteriori Probability (MAP) based multiuser detection method is proposed. The proposed method models the activity state of users as Markov chain and transforms multiuser detection into searching optimal path in grid map with BCJR algorithm. Simulation results indicate that the proposed method obtains 2.6dB and 1dB Eb/N0 gains respectively when activity detection error rate and symbol error rate reach 10-3, comparing with reference methods.

방송 코어 망(BCN) 표준화 동향 (Trends of Broadcast Core Network Standardization)

  • 김순철;이재영;허남호;최동준
    • 전자통신동향분석
    • /
    • 제36권6호
    • /
    • pp.25-35
    • /
    • 2021
  • ATSC 3.0 is a next-generation terrestrial broadcasting standard that provides various functions and improved performance compared to the existing ATSC 1.0 High Definition standard. Based on the ATSC 3.0 broadcast system with IP-centric transport and coherence, it can provide personalized and personalized interactive services to TV viewers. However, the broadcasting system still has a structural limitation in that the service is deployed separately from broadcasters who are allocated a specific frequency and is expected to have different spectrum allocation for each market. To overcome this structural limitation and provide improved services compared with the current ATSC 3.0, preliminary studies were conducted to apply the core network concept of a communication network (particularly 5G) to ATSC 3.0 broadcasting. Finally, in february of this year, the ATSC TG3/S43 group for the development of the ATSC 3.0 Broadcast Core Network (BCN) standard was launched. This paper describes the background and current status of BCN standardization by ATSC TG3/S43, and future standardization prospects.

One Step Measurements of hippocampal Pure Volumes from MRI Data Using an Ensemble Model of 3-D Convolutional Neural Network

  • Basher, Abol;Ahmed, Samsuddin;Jung, Ho Yub
    • 스마트미디어저널
    • /
    • 제9권2호
    • /
    • pp.22-32
    • /
    • 2020
  • The hippocampal volume atrophy is known to be linked with neuro-degenerative disorders and it is also one of the most important early biomarkers for Alzheimer's disease detection. The measurements of hippocampal pure volumes from Magnetic Resonance Imaging (MRI) is a crucial task and state-of-the-art methods require a large amount of time. In addition, the structural brain development is investigated using MRI data, where brain morphometry (e.g. cortical thickness, volume, surface area etc.) study is one of the significant parts of the analysis. In this study, we have proposed a patch-based ensemble model of 3-D convolutional neural network (CNN) to measure the hippocampal pure volume from MRI data. The 3-D patches were extracted from the volumetric MRI scans to train the proposed 3-D CNN models. The trained models are used to construct the ensemble 3-D CNN model and the aggregated model predicts the pure volume in one-step in the test phase. Our approach takes only 5 seconds to estimate the volumes from an MRI scan. The average errors for the proposed ensemble 3-D CNN model are 11.7±8.8 (error%±STD) and 12.5±12.8 (error%±STD) for the left and right hippocampi of 65 test MRI scans, respectively. The quantitative study on the predicted volumes over the ground truth volumes shows that the proposed approach can be used as a proxy.

3D NoC 구조에서 성능을 고려한 어댑티브 수직 스로틀링 기반 동적 열관리 기법 (Performance-aware Dynamic Thermal Management by Adaptive Vertical Throttling in 3D Network-on-Chip)

  • 황준선;한태희
    • 전자공학회논문지
    • /
    • 제51권7호
    • /
    • pp.103-110
    • /
    • 2014
  • 최근 등장한 TSV(Through Silicon Via)기반의 3D 적층 기술은 보다 강력한 발열관리 기법을 필요로 하며 냉각 비용과 폼팩터(form factor)의 제한을 고려했을 때 소프트웨어적인 열관리 기법의 중요성이 더욱 강조되고 있다. 이러한 접근 방식의 유력한 후보 중 하나로 제시되었던 스로틀링을 통한 열관리 기법의 경우, 증가하는 버스 점유율로 인해 전체적인 성능저하를 야기하는 문제점이 있다. 본 논문에서는 향후 TSV 기반 3D SoC의 커뮤니케이션 병목 현상을 해결하기 위한 3D 네트워크-온-칩 (Network-on-Chip, NoC) 구조에서 어댑티브 스로틀링 기법을 제안하여, 열관리와 더불어 온-칩 네트워크상의 트래픽 감소를 통해 전체적인 성능향상을 목표로 한다. 본 논문에서는 실험을 통하여 기존의 방식에 비하여 스로틀링으로 인해 저하된 처리량이 최소경로 라우팅 시 최대 72% 향상됨을 알 수 있었다.

분위 회귀 분석을 이용한 비디오로부터의 3차원 인체 복원 (3D Human Reconstruction from Video using Quantile Regression)

  • 한지수;박인규
    • 방송공학회논문지
    • /
    • 제24권2호
    • /
    • pp.264-272
    • /
    • 2019
  • 본 논문은 비디오로부터 추출한 프레임으로부터 3차원 인체 형상과 자세 복원을 수행하고 이를 시간 축에서 자연스럽고 부드러운 움직임을 나타내도록 보정하는 기법을 제안한다. 제안하는 기법은 우선 비디오로부터 추출한 개별 프레임으로부터 convolutional neural network을 이용하여 관절의 위치와 인체의 윤곽을 추정한다. 인체의 형상 및 자세는 매개변수 기반의 3차원 변형가능 모델(morphable model)을 2차원 영상으로 투영후 정합하여 최적의 매개변수 값을 추정한다. 이 때 각 프레임에 대한 복원이 개별적으로 수행되면 시간 축에서 자세의 연속성과 체형의 일관성이 보장되지 못하고 올바르지 못한 복원 결과가 나타난다. 제안하는 기법은 이러한 문제점을 보완하기 위하여 각 프레임으로부터 복원된 3차원 변형가능 모델의 주성분 매개변수의 분석 및 보간을 수행한다. 실험결과 3차원 인체 복원에 오류가 발생한 프레임에 대해 이전과 이후 프레임들 사이의 관계를 통해 오류가 보정되어 개선된 복원 결과를 얻을 수 있음을 보인다.