DOI QR코드

DOI QR Code

Performance-aware Dynamic Thermal Management by Adaptive Vertical Throttling in 3D Network-on-Chip

3D NoC 구조에서 성능을 고려한 어댑티브 수직 스로틀링 기반 동적 열관리 기법

  • Hwang, Junsun (College of Information & Communication Engineering, Sungkyunkwan University) ;
  • Han, Tae Hee (College of Information & Communication Engineering, Sungkyunkwan University)
  • 황준선 (성균관대학교 정보통신대학) ;
  • 한태희 (성균관대학교 정보통신대학)
  • Received : 2014.03.12
  • Accepted : 2014.06.23
  • Published : 2014.07.25

Abstract

Recent TSV based 3D Integrated Circuit (IC) technology needs more powerful thermal management techniques. However, because cooling cost and form factor are restricted, thermal management are emphasis on software based techniques. But in case of throttling thermal management which one of the most candidate technique, increasing bus occupation induce total performance decrease. To solve communication bottleneck issue in TSV based 3D SoC, we proposed adaptive throttling technique Experimental results show that the proposed method can improve throughput by about 72% compare with minimal path routing.

최근 등장한 TSV(Through Silicon Via)기반의 3D 적층 기술은 보다 강력한 발열관리 기법을 필요로 하며 냉각 비용과 폼팩터(form factor)의 제한을 고려했을 때 소프트웨어적인 열관리 기법의 중요성이 더욱 강조되고 있다. 이러한 접근 방식의 유력한 후보 중 하나로 제시되었던 스로틀링을 통한 열관리 기법의 경우, 증가하는 버스 점유율로 인해 전체적인 성능저하를 야기하는 문제점이 있다. 본 논문에서는 향후 TSV 기반 3D SoC의 커뮤니케이션 병목 현상을 해결하기 위한 3D 네트워크-온-칩 (Network-on-Chip, NoC) 구조에서 어댑티브 스로틀링 기법을 제안하여, 열관리와 더불어 온-칩 네트워크상의 트래픽 감소를 통해 전체적인 성능향상을 목표로 한다. 본 논문에서는 실험을 통하여 기존의 방식에 비하여 스로틀링으로 인해 저하된 처리량이 최소경로 라우팅 시 최대 72% 향상됨을 알 수 있었다.

Keywords

References

  1. J. Kong, S.W. Chung, and K. Skadron, "Recent Thermal Management Techniques for Microprocessors," ACM Computing Surveys, 2011.
  2. C.H. Chao et al., "Transport Layer Assisted Routing for Run-Time Thermal Management of 3D NoC Systems," to be appeared in ACM Transactions on Embedded Computing Systems, 2011.
  3. T. Wegner et al., "Impact of Proactive Temperature Management on Performance of Networks-on-Chip," Int'l Symp. System on Chip (ISSOC), pp.116-121, Oct. 2011.
  4. K.C. Chen et al., "Design of thermal management unit with vertical throttling scheme for proactive thermal-aware 3D NoC systems," IEEE Int. Symp. VLSI Design, Automation and Test (VLSI-DAT), Apr. 2013.
  5. C.-H. Chao et al., "Traffic- and Thermal-Aware Run-Time Thermal Management Scheme for 3D NoC Systems," in Proc of NOCS 2010, pp. 223-230.
  6. K.C. Chen, C. Kuo, H.-S. Hung, and A.-Y. (Andy) Wu, "Traffic- and Thermal-aware Adaptive Beltway Routing for three dimensional Network-on-Chip Systems," IEEE international Symposium on Circuits and Systems (ISCAS), May 2013.
  7. K.-C. Chen, S.-Y. Lin, H.-S. Hung, A.-Y. Wu, "Topology-Aware Adaptive Routing for Non-Stationary Irregular Mesh in Throttled 3D NoC Systems," IEEE Trans. Parallel and Distributed Systems, vol.24, no.10, pp. 2109-2120, Oct. 2012.
  8. S.W. Chung and K. Skadron, "A Novel Software Solution for Localized Thermal Problems," Proc. Fourth Int'l Symp. Parallel and Distributed Processing and Applications (ISPA), pp. 63-74, Dec. 2006.
  9. Y. Hoskote, S. Vangal, A. Singh, N. Borkar, and S. Borkar, " A 5-GHz Mesh Interconnect for A Teraflops Processor", IEEE MICRO, vol. 27, pp. 51-61, 2007. https://doi.org/10.1109/MM.2007.4378783
  10. A. Kahng, B. Li, L.-S. Peh, and K. Samadi, "ORION 2.0: A Fast and Accurate NoC Power and Area Model for Early-Stage Design Space Exploration," in DATE, 2009.
  11. W. Huang, M.R. Stan, K. Skadron, K. Sankaranarayanan, and S. Ghosh, "HotSpot: A Compact Thermal Modeling Method for CMOS VLSI Systems," IEEE Trans. Very Large Scale Integration Systems, vol. 14, no. 5, pp. 501-513, May 2006. https://doi.org/10.1109/TVLSI.2006.876103
  12. Noxim: network-on-chip simulator [Online]. Available: http://sourceforge.net/projects/noxim/
  13. K.-Y. Jheng, C.-H. Chao, H.-Y. Wang, and A.-Y. Wu, "Traffic-Thermal Mutual-Coupling Co-Simulation Platform for Three-Dimensional Network-on-Chip," in Proc. IEEE Intl. Symp. on VLSI Design, Automation, and Test (VLSI-DAT'10), Apr. 2010.

Cited by

  1. Thermal Conductivity Characterization of Thermal Grease Containing Copper Nanopowder vol.13, pp.8, 2014, https://doi.org/10.3390/ma13081893