• Title/Summary/Keyword: 3D genomics

Search Result 127, Processing Time 0.025 seconds

Lead Informatics Using Protein 3D-Structures

  • Ro, Seong-Gu;Shin, Dong-Kyu;Han, Hui-Jong;Jeon, Young-Ho;Jeong, Eui-Jun;Hwang, Kwang-Yeon;Kim, Hye-Yeon;Heo, Yong-Seok;Lee, Tae-Gyu;Kim, Jin-Hwan
    • Proceedings of the PSK Conference
    • /
    • 2001.04a
    • /
    • pp.77-77
    • /
    • 2001
  • PDF

Fangchinoline Inhibits Cell Proliferation Via Akt/GSK-3beta/cyclin D1 Signaling and Induces Apoptosis in MDA-MB-231 Breast Cancer Cells

  • Wang, Chang-Dong;Yuan, Cheng-Fu;Bu, You-Quan;Wu, Xiang-Mei;Wan, Jin-Yuan;Zhang, Li;Hu, Ning;Liu, Xian-Jun;Zu, Yong;Liu, Ge-Li;Song, Fang-Zhou
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.2
    • /
    • pp.769-773
    • /
    • 2014
  • Fangchinoline (Fan) inhibits cell proliferation and induces apoptosis in several cancer cell lines. The effects of Fan on cell growth and proliferation in breast cancer cells remain to be elucidated. Here, we show that Fan inhibited cell proliferation in the MDA-MB-231 breast cancer cell line through suppression of the AKT/Gsk-3beta/cyclin D1 signaling pathway. Furthermore, Fan induced apoptosis by increasing the expression of Bax (relative to Bcl-2), active caspase 3 and cytochrome-c. Fan significantly inhibited cell proliferation of MDA-MB-231 cells in a concentration and time dependent manner as determined by MTT assay. Flow cytometry analysis demonstrated that Fan treatment of MDA-MB-231 cells resulted in cell cycle arrest at the G1 phase, which correlated with apparent downregulation of both mRNA and protein levels of both PCNA and cyclin D1. Further analysis demonstrated that Fan decreased the phosphorylation of AKT and GSK-3beta. In addition, Fan up-regulated active caspase3, cytochrome-c protein levels and the ratio of Bax/Bcl-2, accompanied by apoptosis. Taken together, these results suggest that Fan is a potential natural product for the treatment of breast cancer.

De novo assembly, annotation and gene expression profiles of gonads of Cytorace-3, a hybrid lineage of Drosophila nasuta nasuta and D. n. albomicans

  • Ponnanna, Koushik;DSouza, Stafny M.;Ramachandra, Nallur B.
    • Genomics & Informatics
    • /
    • v.19 no.1
    • /
    • pp.8.1-8.12
    • /
    • 2021
  • Cytorace-3 is a laboratory evolved hybrid lineage of Drosophila nasuta nasuta males and Drosophila nasuta albomicans females currently passing ~850 generations. To assess interracial hybridization effects on gene expression in Cytorace-3 we profiled the transcriptomes of mature ovaries and testes by employing Illumina sequencing technology and de novo transcriptome assembling strategies. We found 26% of the ovarian, and 14% of testis genes to be differentially expressed in Cytorace-3 relative to the expressed genes in the parental gonadal transcriptomes. About 5% of genes exhibited additive gene expression pattern in the ovary and 3% in the testis, while the remaining genes were misexpressed in Cytorace-3. Nearly 772 of these misexpressed genes in the ovary and 413 in the testis were either over-or under-dominant. Genes following D. n. nasuta dominance was twice (270 genes) than D. n. albomicans dominance (133 genes) in the ovary. In contrast, only 105 genes showed D. n. nasuta dominance and 207 showed D. n. albomicans dominance in testis transcriptome. Of the six expression inheritance patterns, conserved inheritance pattern was predominant for both ovary (73%) and testis (85%) in Cytorace-3. This study is the first to provide an overview of the expression divergence and inheritance patterns of the transcriptomes in an independently evolving distinct hybrid lineage of Drosophila. This recorded expression divergence in Cytorace-3 surpasses that between parental lineages illustrating the strong impact of hybridization driving rapid gene expression changes.

Overcoming taxonomic challenges in DNA barcoding for improvement of identification and preservation of clariid catfish species

  • Piangjai Chalermwong;Thitipong Panthum;Pish Wattanadilokcahtkun;Nattakan Ariyaraphong;Thanyapat Thong;Phanitada Srikampa;Worapong Singchat;Syed Farhan Ahmad;Kantika Noito;Ryan Rasoarahona;Artem Lisachov;Hina Ali;Ekaphan Kraichak;Narongrit Muangmai;Satid Chatchaiphan6;Kednapat Sriphairoj;Sittichai Hatachote;Aingorn Chaiyes;Chatchawan Jantasuriyarat;Visarut Chailertlit;Warong Suksavate;Jumaporn Sonongbua;Witsanu Srimai;Sunchai Payungporn;Kyudong Han;Agostinho Antunes;Prapansak Srisapoome;Akihiko Koga;Prateep Duengkae;Yoichi Matsuda;Uthairat Na-Nakorn;Kornsorn Srikulnath
    • Genomics & Informatics
    • /
    • v.21 no.3
    • /
    • pp.39.1-39.15
    • /
    • 2023
  • DNA barcoding without assessing reliability and validity causes taxonomic errors of species identification, which is responsible for disruptions of their conservation and aquaculture industry. Although DNA barcoding facilitates molecular identification and phylogenetic analysis of species, its availability in clariid catfish lineage remains uncertain. In this study, DNA barcoding was developed and validated for clariid catfish. 2,970 barcode sequences from mitochondrial cytochrome c oxidase I (COI) and cytochrome b (Cytb) genes and D-loop sequences were analyzed for 37 clariid catfish species. The highest intraspecific nearest neighbor distances were 85.47%, 98.03%, and 89.10% for COI, Cytb, and D-loop sequences, respectively. This suggests that the Cytb gene is the most appropriate for identifying clariid catfish and can serve as a standard region for DNA barcoding. A positive barcoding gap between interspecific and intraspecific sequence divergence was observed in the Cytb dataset but not in the COI and D-loop datasets. Intraspecific variation was typically less than 4.4%, whereas interspecific variation was generally more than 66.9%. However, a species complex was detected in walking catfish and significant intraspecific sequence divergence was observed in North African catfish. These findings suggest the need to focus on developing a DNA barcoding system for classifying clariid catfish properly and to validate its efficacy for a wider range of clariid catfish. With an enriched database of multiple sequences from a target species and its genus, species identification can be more accurate and biodiversity assessment of the species can be facilitated.

Mapping QTLs for Tissue Culture Response of Mature Wheat Embryos

  • Jia, Haiyan;Yi, Dalong;Yu, Jie;Xue, Shulin;Xiang, Yang;Zhang, Caiqin;Zhang, Zhengzhi;Zhang, Lixia;Ma, Zhengqiang
    • Molecules and Cells
    • /
    • v.23 no.3
    • /
    • pp.323-330
    • /
    • 2007
  • The mature wheat embryo is arguably one of the best explants for genetic transformation because of its unlimited availability and lack of growth season restriction. However, an efficient regeneration system using mature wheat embryos (Triticum aestivum L.) is still not available. To identify genes related to the tissue culture response (TCR) of wheat, QTLs for callus induction from mature embryos and callus regeneration were mapped using an RIL population derived from the cross of 'Wangshuibai' with 'Nanda2419', which has a good TCR. By whole genome scanning we identified five, four and four chromosome regions conditioning, respectively, percent embryos forming a callus (PEFC), percent calli regenerating plantlets (PCRP), and number of plantlets per regenerating callus (NPRC). The major QTLs QPefc.nau-2A and QPcrp.nau-2A were mapped to the long arm of chromosome 2A, explaining up to 22.8% and 17.6% of the respective phenotypic variance. Moreover, two major QTLs for NPRC were detected on chromosomes 2D and 5D; these together explained 51.6% of the phenotypic variance. We found that chromosomes 2A, 2D, 5A, 5B and 5D were associated via different intervals with at least two of the three TCR indexes used. Based on this study and other reports, the TCRs of different explant types of wheat may be under the control of shared or tightly linked genes, while different genes or gene combinations may govern the stages from callus induction to plantlet regeneration. The importance of group 2 and 5 chromosomes in controlling the TCRs of Triticeae crops and the likely conservation of the corresponding genes in cereals are discussed.

Association of Microsatellite Marker in FABP4 Gene with Marbling Score and Live Weight in Hanwoo

  • Lee, Seung-Hwan;Cho, Yong-Min;Kim, Hyeong-Cheol;Lim, Da-Jeong;Moon, Hee-Joo;Hong, Seong-Koo;Oh, Sung-Jong;Kim, Tae-Hun;Yoon, Du-Hak;Park, Eung-Woo
    • Journal of Animal Science and Technology
    • /
    • v.52 no.6
    • /
    • pp.475-480
    • /
    • 2010
  • The bovine fatty acid binding protein 4 (FABP4) plays an important role to uptake intracellular fatty acid. It has been previously reported as a positional candidate gene for marbling score in livestock. The re-sequencing of FABP4 gene detected a polymorphic AT repeated sequence in intron II of FABP4 gene. Allelic distribution for this microsatellite marker was examined in other cattle breeds. A total of 8 alleles were detected with diverse repeat units (14 to 21 AT repeat) in Hanwoo and 7 breeds. Of the 8 alleles, the predominant alleles were $[AT]_{16}$, $[AT]_{18}$ and $[AT]_{19}$ in the Hanwoo and 7 cattle breeds. The linear mixed model for genotypic effect (3237AT) on carcass traits showed a significant effect on marbling score (MAR P=0.025) and live weight (LWT; P=0.04) in the 583 Hanwoo cattle population. Live weight (LW) was highest in the homozygous $(AT)_{17}$ genotype ($557.5{\pm}6.94$) and lowest in the heterozygous $(AT)_{16/17}$ genotype ($521.7{\pm}7.70$). On the other hand, the homozygous $(AT)_{17}$ genotype ($3.0{\pm}0.15$) has the highest effect on marbling score and the lowest effect was in homozygous (AT)$_{18}$ genotype ($2.2{\pm}0.15$). The marbling score difference between both groups was 0.8 which is around two times higher than SNP genotype effect on marbling score in Limousin $\times$ Wagyu crosses.

Effects of Dietary Thiazolidinedione Supplementation on Growth Performance, Intramuscular Fat and Related Genes mRNA Abundance in the Longissimus Dorsi Muscle of Finishing Pigs

  • Chen, X.;Feng, Y.;Yang, W.J.;Shu, G.;Jiang, Q.Y.;Wang, X.Q.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.7
    • /
    • pp.1012-1020
    • /
    • 2013
  • The objective of this study was to investigate the effect of dietary supplementation with thiazolidinedione (TZD) on growth performance and meat quality of finishing pigs. In Experiment 1, 80 castrated finishing pigs (Large White${\times}$Landrace, BW = 54.34 kg) were randomly assigned to 2 treatments with 5 replicates of 8 pigs each. The experimental pigs in the 2 groups were respectively fed with a diet with or without a TZD supplementation (15 mg/kg). In Experiment 2, 80 castrated finishing pigs (Large White${\times}$Landrace, BW = 71.46 kg) were divided into 2 treatments as designed in Experiment 1, moreover, carcass evaluations were performed. The results from Experiment 1 showed that TZD supplementation could significantly decreased the average daily feed intake (ADFI) (p<0.05) during 0 to 28 d, without impairing the average daily gain (ADG) (p>0.05). In Experiment 2, the ADG was significantly increased by TZD supplementation during 14 to 28 d and 0 to 28 d (p<0.05) and the feed:gain ratio (F:G) was significantly decreased by TZD supplementation during 0 to 28 d (p<0.05). Compared with the control group, TZD group had significantly higher serum triglyceride (TG) concentration at 28h and serum high-density lipoprotein (HDL) levels at 14 d (p<0.05). Moreover, there was an apparent improvement in the marbling score (p<0.10) and intramuscular fat (IMF) content (p<0.10) of the longissimus dorsi muscle in pigs treated by TZD supplementation. Real-time RT-PCR analyses demonstrated that pigs of TZD group had higher mRNA abundance of $PPAR{\gamma}$ coactivator 1 (PGC-1) (p<0.05) and fatty acid-binding protein 3 (FABP3) (p<0.05) than pigs of control group. Taken together, these results suggested that dietary TZD supplementation could improve growth performance and increase the IMF content of finishing pigs through regulating the serum parameters and genes mRNA abundance involved in fat metabolism.

Identification of Amino-Acids Residues for Key Role in Dextransucrase Activity of Leuconostoc mesenteroides B-742CB

  • Ryu, Hwa-Ja;Kim, Do-Man;Seo, Eun-Seong;Kang, Hee-Kyung;Lee, Jin-Ha;Yoon, Seung-Heon;Cho, Jae-Young;Robyt, John-F.;Kim, Do-Won;Chang, Suk-Sang;Kim, Seung-Heuk;Kimura, Atsuo
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.1075-1080
    • /
    • 2004
  • Dextransucrase (DSRB742) from Leuconostoc mesenteroides NRRL B-742CB is a glucosyltransferase that catalyzes the synthesis of dextran using sucrose, or the synthesis of oligosaccharides when acceptor molecules, like maltose, are present. The DSRB742 gene (dsrB742) was cloned and the properties were characterized. In order to identify critical amino acid residues, the DSRB742 amino acid sequence was aligned with glucosyltransferase sequences, and three amino acid residues reported as sucrose binding amino acids in Streptococcus glucosyltransferases were selected for site-directed mutagenesis experiments. Asp-533, Asp-536, and His-643 were independently replaced with Ala or Asn. D533A and D536A dextransucrases showed reduced dextran synthesis activities, 2.3% and 40.8% of DSRB742 dextransucrase, respectively, and D533N, D536N, H643A, end H643N dextransucrases showed complete suppression of dextran synthesis activities altogether. Additionally, D536N dextransucrase showed complete suppression of oligosaccharide synthesis activities. However, modifications at Asp-533 or at His-643 retained acceptor reaction activities in the range of 8.4% to 21.3% of DSRB742 acceptor reaction activity. Thus at least two carboxyl groups of Asp-533 and Asp-536, and His-643 as a proton donor, are essential for the catalysis process.

Effects of Dietary Fat Types on Growth Performance, Pork Quality, and Gene Expression in Growing-finishing Pigs

  • Park, J.C.;Kim, S.C.;Lee, S.D.;Jang, H.C.;Kim, N.K.;Lee, S.H.;Jung, H.J.;Kim, I.C.;Seong, H.H.;Choi, Bong-Hwan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.12
    • /
    • pp.1759-1767
    • /
    • 2012
  • This study was performed to determine the effects of dietary fat sources, i.e., beef tallow, soybean oil, olive oil and coconut oil (each 3% in feed), on the growth performance, meat quality and gene expression in growing-finishing pigs. A total of 72 crossbred pigs (Landrace${\times}$Large White${\times}$Duroc) were used at $71{\pm}1$ kg body weight (about 130 d of age) in 24 pens ($320{\times}150$ cm) in a confined pig house (three pigs per pen) with six replicate pens per treatment. The growing diet was given for periods of $14{\pm}3$ d and the finishing diet was given for periods of $28{\pm}3$ d. The fat type had no significant effect either on growth performance or on chemical composition or on meat quality in growing-finishing pigs. Dietary fat type affected fatty acid composition, with higher levels of unsaturated fatty acids (UFAs) and monounsaturated fatty acids (MUFAs) in the olive oil group. Microarray analysis in the Longissimus dorsi identified 6 genes, related to insulin signaling pathway, that were differentially expressed among the different feed groups. Real time-PCR was conducted on the six genes in the longissimus dorsi muscle (LM). In particular, the genes encoding the protein kinase, cAMP-dependent, regulatory, type II, alpha (PRKAR2A) and the catalytic subunit of protein phosphatase 1, beta isoform (PPP1CB) showed the highest expression level in the olive oil group (respectively, p<0.05, p<0.001). The results of this study indicate that the type of dietary fat affects fatty acid composition and insulin signaling-related gene expression in the LM of pigs.