Mapping QTLs for Tissue Culture Response of Mature Wheat Embryos

  • Jia, Haiyan (The Applied Plant Genomics Lab & National Key Lab of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University) ;
  • Yi, Dalong (The Applied Plant Genomics Lab & National Key Lab of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University) ;
  • Yu, Jie (The Applied Plant Genomics Lab & National Key Lab of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University) ;
  • Xue, Shulin (The Applied Plant Genomics Lab & National Key Lab of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University) ;
  • Xiang, Yang (The Applied Plant Genomics Lab & National Key Lab of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University) ;
  • Zhang, Caiqin (The Applied Plant Genomics Lab & National Key Lab of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University) ;
  • Zhang, Zhengzhi (The Applied Plant Genomics Lab & National Key Lab of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University) ;
  • Zhang, Lixia (The Applied Plant Genomics Lab & National Key Lab of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University) ;
  • Ma, Zhengqiang (The Applied Plant Genomics Lab & National Key Lab of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University)
  • Received : 2006.12.19
  • Accepted : 2007.02.27
  • Published : 2007.06.30

Abstract

The mature wheat embryo is arguably one of the best explants for genetic transformation because of its unlimited availability and lack of growth season restriction. However, an efficient regeneration system using mature wheat embryos (Triticum aestivum L.) is still not available. To identify genes related to the tissue culture response (TCR) of wheat, QTLs for callus induction from mature embryos and callus regeneration were mapped using an RIL population derived from the cross of 'Wangshuibai' with 'Nanda2419', which has a good TCR. By whole genome scanning we identified five, four and four chromosome regions conditioning, respectively, percent embryos forming a callus (PEFC), percent calli regenerating plantlets (PCRP), and number of plantlets per regenerating callus (NPRC). The major QTLs QPefc.nau-2A and QPcrp.nau-2A were mapped to the long arm of chromosome 2A, explaining up to 22.8% and 17.6% of the respective phenotypic variance. Moreover, two major QTLs for NPRC were detected on chromosomes 2D and 5D; these together explained 51.6% of the phenotypic variance. We found that chromosomes 2A, 2D, 5A, 5B and 5D were associated via different intervals with at least two of the three TCR indexes used. Based on this study and other reports, the TCRs of different explant types of wheat may be under the control of shared or tightly linked genes, while different genes or gene combinations may govern the stages from callus induction to plantlet regeneration. The importance of group 2 and 5 chromosomes in controlling the TCRs of Triticeae crops and the likely conservation of the corresponding genes in cereals are discussed.

Keywords

Acknowledgement

Supported by : Outstanding Youth Fund of the NNSFC, Ministry of Education, China

References

  1. Ahn, S., Anderson, J. A., Sorrells, M. E., and Tanksley, S. D. (1993) Homoeologous relationships of rice, wheat and maize chromosomes. Mol. Gen. Genet. 241, 483-490 https://doi.org/10.1007/BF00279889
  2. Ben Amer, I. M., Worland, A. J., and Börner, A. (1992) In vitro culture variation of wheat and rye caused by genes affecting plant growth habit in vivo. Euphytica 61, 233-240 https://doi.org/10.1007/BF00039663
  3. Ben Amer, I. M., Korzun, V., Worland, A. J., and Börner, A. (1997) Genetic mapping of QTL controlling tissue-culture response on chromosome 2B of wheat (Triticum aestivum L.) in relation to major genes and RFLP markers. Theor. Appl. Genet. 94, 1047-1052 https://doi.org/10.1007/s001220050513
  4. Birsin, M. A. and Ozgen, M. (2004) A comparison of callus induction and plant regeneration from different embryo explants of triticale (x Triticosecale Wittmack). Cell. Mol. Biol. Lett. 9, 353-361
  5. Bregitzer, P. and Campbell, R. D. (2001) Genetic markers associated green and albino plant regeneration from embryogenic barley callus. Crop Sci. 41, 173-179 https://doi.org/10.2135/cropsci2001.411173x
  6. Cheng, M., Hu, T., Layton, J. I., Liu, C. N., and Fry, J. E. (2003) Desiccation of plant tissues post-Agrobacterium infection enhances T-DNA delivery and increases stable transformation efficiency in wheat. In Vitro Cell. Dev. Biol. Plant 39, 595-604l https://doi.org/10.1079/IVP2003471
  7. Fernandez, S., Michaux-Ferriere, N., and Coumans, M. (1999) The embryogenic response of immature embryo cultures of durum wheat (Triticum Desf): history and improvement by AgNO3. Plant Growth Regulation 28, 147-155 https://doi.org/10.1023/A:1006142504577
  8. Gamborg, O. L., Miller, R. A., and Ojima, K. (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell. Res. 50, 151-158 https://doi.org/10.1016/0014-4827(68)90403-5
  9. He, P., Shen, L. S., Lu, C. F., Chen, Y., and Zhu, L. H. (1998) Analysis of quantitative trait loci which contribute to anther culturability in rice (Oryza sativa L.). Mol. Breed. 4, 165-172 https://doi.org/10.1023/A:1009692221152
  10. Henry, Y., Vain, P., and Buyser, J. D. (1994) Genetic analysis of in vitro plant tissue culture responses and regeneration capacities. Euphytica 79, 45-58 https://doi.org/10.1007/BF00023575
  11. Kwon, Y. S., Kim, K. M., Eun, M. Y., and Sohn, J. K. (2001) Quantitative trait loci mapping associated with plant regeneration ability from seed derived callus in eice (Oryza sativa L.). Mol. Cells 11, 64-67
  12. Lander, E. S. and Botstein, D. (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121, 185-199
  13. Lin, F., Kong, Z. X., Zhu, H. L., Xue, S. L., Wu, J. Z., et al. (2004) Mapping QTL associated with resistance to Fusarium head blight in the Nanda2419 x Wangshuibai population. I. Type II resistance. Theor. Appl. Genet. 109, 1504-1511 https://doi.org/10.1007/s00122-004-1772-z
  14. Mano, Y. and Komatsuda, T. (2002) Identification of QTL controlling tissue-culture traits in barley (Hordeum vulgare L.). Theor. Appl. Genet. 105, 708-715 https://doi.org/10.1007/s00122-002-0992-3
  15. Nishimura, A., Ashikari, M., Lin, S. Y., Takashi, T., Angeles, E., et al. (2005) Isolation of a rice regeneration quantitative trait loci gene and its application to transformation systems. Prco. Natl. Acad. Sci. USA 102, 11940-11942
  16. Ozgen, M., Turet, M., Altmok, S., and Sancak, C. (1996) Callus induction and plant regeneration from immature and mature embryos of winter durum wheat genotypes. Plant Breed. 115, 455-458 https://doi.org/10.1111/j.1439-0523.1996.tb00956.x
  17. Ozgen, M., Turet, M., Altmok, S., and Sancak, C. (1998) Efficient callus induction and plant regeneration from mature embryo culture of winter wheat (Triticum aestivum L.) genotypes. Plant Cell. Rep. 18, 331-335 https://doi.org/10.1007/s002990050581
  18. Ozgen, M., Tuet, M., and Avcil, M. (2001) Cytoplasmic effects on the tissue culture response of callus from winter wheat mature embryos. Plant Cell. Tissue Organ. Cult. 64, 81-84 https://doi.org/10.1023/A:1010609603915
  19. Rota, M. L. and Sorrells, M. E. (2004) Comparative DNA sequence analysis of mapped wheat ESTs reveals the complexity of genome relationships between rice and wheat. Funct. Integr. Genomics 4, 34-46 https://doi.org/10.1007/s10142-003-0098-2
  20. Pellegrineschi, A., Noguera, L. M., Skovemand, B., Brito, R. M., Velazquez, L., et al. (2002) Identification of highly transformable wheat genotype for production of fertile transgenic plants. Genome 45, 421-430 https://doi.org/10.1139/g01-154
  21. Sayar, M. T., Birsin, M. A., Ulukan, H., and Ozgen, M. (1999) Effect of seed size on the tissue culture response of callus from mature embryos of wheat species. Wheat Information Service 89, 1-6
  22. Shah, M. I., Jabeen, M., and Ilahi, I. (2003) In vitro callus induction, its proliferation and regeneration in seed explants of wheat. Pak. J. Bot. 35, 209-217
  23. Sharma, V. K., Hansch, R., Mendel, R. R., and Schulze, J. (2005) Mature embryo axis-based high frequency somatic embryogenesis and plant regeneration from multiple cultivars of barely (Hordeum vulgare L). J. Exp. Bot. 56, 1913-1922 https://doi.org/10.1093/jxb/eri186
  24. Taguchi-Shiobara, F., Lin, S. Y., Tanno, K., Komatsuda, T., Yano, M., et al. (1997) Mapping quantitative trait loci associated with regeneration ability of seed callus in rice, Oryza sativa L. Theor. Appl. Genet. 95, 828-833 https://doi.org/10.1007/s001220050632
  25. Taguchi-shiobara, F., Komatsuda, T., and Oka, S. (2001) Comparative analysis of QTL for regeneration ability on barley 2H chromosome and rice chromosome 4. RGN 18, 14-15
  26. Taguchi-Shiobara, F., Yamamoto, T., Yano, M., and Oka, S. (2006) Mapping QTLs that control the performance of rice tissue culture and evaluation of derived near-isogenic lines. Theor. Appl. Genet. 112, 968-972 https://doi.org/10.1007/s00122-005-0200-3
  27. Takeuchi, Y., Abe, T., and Sasahara, T. (2000) RFLP Mapping of QTL influencing shoot regeneration from mature seedderived callus in rice. Crop Sci. 40, 246-247
  28. Torp, A. M., Hansen, A. L., and Andersen, S. B. (2001) Chromosomal regions associated with green plant regeneration in wheat (Triticum aestivum L.) anther culture. Euphytica 119, 377-387 https://doi.org/10.1023/A:1017554129904
  29. Turhan, H. and Baser, I. (2004) Callus induction from mature embryo of winter wheat (Triticum aestivum L.). Asian J. Plant Sci. 3, 17-19 https://doi.org/10.3923/ajps.2004.17.19
  30. Van Deynze, A. E., Nelson, J. C., Yglesias, E. S., Harrington, S. E., Braga, D. P., et al. (1995) Comparative mapping in grasses. Wheat relationships. Mol. Gen. Genet. 248, 744-754 https://doi.org/10.1007/BF02191715