DOI QR코드

DOI QR Code

De novo assembly, annotation and gene expression profiles of gonads of Cytorace-3, a hybrid lineage of Drosophila nasuta nasuta and D. n. albomicans

  • Ponnanna, Koushik (Department of Studies in Genetics and Genomics, University of Mysore) ;
  • DSouza, Stafny M. (Department of Studies in Genetics and Genomics, University of Mysore) ;
  • Ramachandra, Nallur B. (Department of Studies in Genetics and Genomics, University of Mysore)
  • Received : 2020.09.07
  • Accepted : 2020.12.19
  • Published : 2021.03.31

Abstract

Cytorace-3 is a laboratory evolved hybrid lineage of Drosophila nasuta nasuta males and Drosophila nasuta albomicans females currently passing ~850 generations. To assess interracial hybridization effects on gene expression in Cytorace-3 we profiled the transcriptomes of mature ovaries and testes by employing Illumina sequencing technology and de novo transcriptome assembling strategies. We found 26% of the ovarian, and 14% of testis genes to be differentially expressed in Cytorace-3 relative to the expressed genes in the parental gonadal transcriptomes. About 5% of genes exhibited additive gene expression pattern in the ovary and 3% in the testis, while the remaining genes were misexpressed in Cytorace-3. Nearly 772 of these misexpressed genes in the ovary and 413 in the testis were either over-or under-dominant. Genes following D. n. nasuta dominance was twice (270 genes) than D. n. albomicans dominance (133 genes) in the ovary. In contrast, only 105 genes showed D. n. nasuta dominance and 207 showed D. n. albomicans dominance in testis transcriptome. Of the six expression inheritance patterns, conserved inheritance pattern was predominant for both ovary (73%) and testis (85%) in Cytorace-3. This study is the first to provide an overview of the expression divergence and inheritance patterns of the transcriptomes in an independently evolving distinct hybrid lineage of Drosophila. This recorded expression divergence in Cytorace-3 surpasses that between parental lineages illustrating the strong impact of hybridization driving rapid gene expression changes.

Keywords

Acknowledgement

We thank the Department of Studies in Genetics and Genomics, the University of Mysore for providing the infrastructure. We thank Dr. Amruthavalli C. and Dr. M.S. Ranjini (DBT project co-investigators) for the support. We thank Rajanikanth C. for generous help with the illustrations. This work was supported by Department of Biotechnology (DBT), Ministry of Science and Technology, Government of India (grant number BT/PR9871/BID/7/472/2013) to NBR; DST-KSTePS Fellowship (LIF-02) from Karnataka Science and Technology Promotion Society to K.P and DST-INSPIRE Fellowship (IF150898) from Department of Science and Technology, Government of India to S.M.D.

References

  1. Mai D, Nalley MJ, Bachtrog D. Patterns of genomic differentiation in the Drosophila nasuta species complex. Mol Biol Evol 2020;37:208-220. https://doi.org/10.1093/molbev/msz215
  2. Zhou Q, Zhu HM, Huang QF, Zhao L, Zhang GJ, Roy SW, et al. Deciphering neo-sex and B chromosome evolution by the draft genome of Drosophila albomicans. BMC Genomics 2012;13:109. https://doi.org/10.1186/1471-2164-13-109
  3. Gibilisco L, Zhou Q, Mahajan S, Bachtrog D. Alternative splicing within and between Drosophila species, sexes, tissues, and developmental stages. PLoS Genet 2016;12:e1006464. https://doi.org/10.1371/journal.pgen.1006464
  4. Sajjan SN, Krishnamurthy NB. Drosophila neonasuta, a new species of Drosophila from Mysore (Diptera: Drosophilidae). Orient Insects 1973;7:267-270. https://doi.org/10.1080/00305316.1973.10434219
  5. Ramachandra NB, Ranganath HA. The chromosomes of two Drosophila races: D. nasuta nasuta and D. nasuta albomicana: IV. Hybridization and karyotype repatterning. Chromosoma 1986; 93:243-248. https://doi.org/10.1007/BF00292744
  6. Ramachandra NB, Ranganath HA. The chromosomes of two Drosophila races: Drosophila nasuta nasuta and Drosophila nasuta albomicana: V. Introgression and the evolution of new karyotypes. J Zool Syst Evol Res 1990;28:62-68. https://doi.org/10.1111/j.1439-0469.1990.tb00365.x
  7. Mallet J. Hybridization as an invasion of the genome. Trends Ecol Evol 2005;20:229-237. https://doi.org/10.1016/j.tree.2005.02.010
  8. Gupta JP, Dwivedi YN, Singh BK. Natural hybridization in Drosophila. Experientia 1980;36:290. https://doi.org/10.1007/BF01952281
  9. Radhika PN, Ramachandra NB. Divergence of the gene aly in experimentally evolved cytoraces, the members of the nasuta-albomicans complex of Drosophila. Insect Mol Biol 2014;23:435-443. https://doi.org/10.1111/imb.12091
  10. Harini BP, Ramachandra NB. Evolutionary experimentation through hybridization under laboratory condition in Drosophila: evidence for recombinational speciation. BMC Evol Biol 2003;3:20. https://doi.org/10.1186/1471-2148-3-20
  11. Tanuja MT, Ramachandra NB, Ranganath HA. Incipient sexual isolation in the nasuta-albomicans complex of Drosophila: no-choice experiments. J Biosci 2001;26:71-76. https://doi.org/10.1007/BF02708982
  12. Ekblom R, Galindo J. Applications of next generation sequencing in molecular ecology of non-model organisms. Heredity (Edinb) 2011;107:1-15. https://doi.org/10.1038/hdy.2010.152
  13. Gomes S, Civetta A. Hybrid male sterility and genome-wide misexpression of male reproductive proteases. Sci Rep 2015;5:11976. https://doi.org/10.1038/srep11976
  14. McManus CJ, Coolon JD, Duff MO, Eipper-Mains J, Graveley BR, Wittkopp PJ. Regulatory divergence in Drosophila revealed by mRNA-seq. Genome Res 2010;20:816-825. https://doi.org/10.1101/gr.102491.109
  15. Ranz JM, Namgyal K, Gibson G, Hartl DL. Anomalies in the expression profile of interspecific hybrids of Drosophila melanogaster and Drosophila simulans. Genome Res 2004;14:373-379. https://doi.org/10.1101/gr.2019804
  16. Sundararajan V, Civetta A. Male sex interspecies divergence and down regulation of expression of spermatogenesis genes in Drosophila sterile hybrids. J Mol Evol 2011;72:80-89. https://doi.org/10.1007/s00239-010-9404-5
  17. Baack EJ, Rieseberg LH. A genomic view of introgression and hybrid speciation. Curr Opin Genet Dev 2007;17:513-518. https://doi.org/10.1016/j.gde.2007.09.001
  18. Orr HA. The population genetics of speciation: the evolution of hybrid incompatibilities. Genetics 1995;139:1805-1813. https://doi.org/10.1093/genetics/139.4.1805
  19. Ortiz-Barrientos D, Counterman BA, Noor MA. Gene expression divergence and the origin of hybrid dysfunctions. Genetica 2007;129:71-81. https://doi.org/10.1007/s10709-006-0034-1
  20. Comeault AA, Matute DR. Genetic divergence and the number of hybridizing species affect the path to homoploid hybrid speciation. Proc Natl Acad Sci U S A 2018;115:9761-9766. https://doi.org/10.1073/pnas.1809685115
  21. Song L, Florea L. Rcorrector: efficient and accurate error correction for Illumina RNA-seq reads. Gigascience 2015;4:48. https://doi.org/10.1186/s13742-015-0089-y
  22. Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, et al. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 2007;35:7188-7196. https://doi.org/10.1093/nar/gkm864
  23. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 2011;29:644-652. https://doi.org/10.1038/nbt.1883
  24. Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 2012;28: 3150-3152. https://doi.org/10.1093/bioinformatics/bts565
  25. Jensen LJ, Julien P, Kuhn M, von Mering C, Muller J, Doerks T, et al. eggNOG: automated construction and annotation of orthologous groups of genes. Nucleic Acids Res 2008;36:D250-254. https://doi.org/10.1093/nar/gkm796
  26. Bateman A, Birney E, Durbin R, Eddy SR, Howe KL, Sonnhammer EL. The Pfam protein families database. Nucleic Acids Res 2000;28:263-266. https://doi.org/10.1093/nar/28.1.263
  27. Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 2001;305:567-580. https://doi.org/10.1006/jmbi.2000.4315
  28. Petersen TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 2011;8:785-786. https://doi.org/10.1038/nmeth.1701
  29. Bryant DM, Johnson K, DiTommaso T, Tickle T, Couger MB, Payzin-Dogru D, et al. A tissue-mapped axolotl de novo transcriptome enables identification of limb tegeneration gactors. Cell Rep 2017;18:762-776. https://doi.org/10.1016/j.celrep.2016.12.063
  30. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods 2012;9:357-359. https://doi.org/10.1038/nmeth.1923
  31. Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioin-formatics 2011;12:323. https://doi.org/10.1186/1471-2105-12-323
  32. Tarazona S, Garcia F, Ferrer A, Dopazo J, Conesa A. NOIseq: a RNA-seq differential expression method robust for sequencing depth biases. EMBnet J 2011;17:18-19.
  33. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990;215:403-410. https://doi.org/10.1016/S0022-2836(05)80360-2
  34. Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, et al. WEGO: a web tool for plotting GO annotations. Nucleic Acids Res 2006; 34:W293-W297. https://doi.org/10.1093/nar/gkl031
  35. Xie C, Mao X, Huang J, Ding Y, Wu J, Dong S, et al. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res 2011;39:W316-W322. https://doi.org/10.1093/nar/gkr483
  36. Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, et al. Primer3: new capabilities and interfaces. Nucleic Acids Res 2012;40:e115. https://doi.org/10.1093/nar/gks596
  37. Ponnanna K, SM DS, Amruthavalli C, Ramachandra NB. Allopatric sibling species pair Drosophila nasuta nasuta and Drosophila nasuta albomicans exhibit expression divergence in ovarian transcriptomes. Gene 2021;777:145189. https://doi.org/10.1016/j.gene.2020.145189
  38. Lopez-Maestre H, Carnelossi EA, Lacroix V, Burlet N, Mugat B, Chambeyron S, et al. Identification of misexpressed genetic elements in hybrids between Drosophila-related species. Sci Rep 2017;7:40618. https://doi.org/10.1038/srep40618
  39. Chang HY, Ayala FJ. On the origin of incipient reproductive isolation: the case of Drosophila albomicans and D. nasuta. Evolution 1989;43:1610-1624. https://doi.org/10.1111/j.1558-5646.1989.tb02612.x
  40. Ranganath HA, Hagele K. Karyotypic orthoselection in Drosophila. Naturwissenschaften 1981;68:527-528. https://doi.org/10.1007/BF00365385
  41. Cuadrado M, Sacristan M, Antequera F. Species-specific organization of CpG island promoters at mammalian homologous genes. EMBO Rep 2001;2:586-592. https://doi.org/10.1093/embo-reports/kve131
  42. Wray GA, Hahn MW, Abouheif E, Balhoff JP, Pizer M, Rockman MV, et al. The evolution of transcriptional regulation in eukaryotes. Mol Biol Evol 2003;20:1377-1419. https://doi.org/10.1093/molbev/msg140
  43. Gu H, Qi X, Jia Y, Zhang Z, Nie C, Li X, et al. Inheritance patterns of the transcriptome in hybrid chickens and their parents revealed by expression analysis. Sci Rep 2019;9:5750. https://doi.org/10.1038/s41598-019-42019-x
  44. Ranjini MS, Ramachandra NB. Rapid evolution of a few members of nasuta-albomicans complex of Drosophila: study on two candidate genes, Sod1 and Rpd3. J Mol Evol 2013;76:311-323. https://doi.org/10.1007/s00239-013-9560-5
  45. Harini BP, Ramachandra NB. Racial divergence in the foreleg bristles of four members of the nasuta-albomicans complex of Drosophila. Curr Sci 2003;85:1444-1450.
  46. Sturtevant AH. Genetic studies on DROSOPHILA SIMULANS. I. Introduction. Hybrids with DROSOPHILA MELANOGASTER. Genetics 1920;5:488-500. https://doi.org/10.1093/genetics/5.5.488
  47. Bonnier G. Contributions to the knowledge of intra- and inter-specific relationships in Drosophila. Acta Zool 1924;5:1-122. https://doi.org/10.1111/j.1463-6395.1924.tb00167.x
  48. Song R, Messing J. Gene expression of a gene family in maize based on noncollinear haplotypes. Proc Natl Acad Sci U S A 2003;100:9055-9060. https://doi.org/10.1073/pnas.1032999100
  49. Springer NM, Stupar RM. Allele-specific expression patterns reveal biases and embryo-specific parent-of-origin effects in hybrid maize. Plant Cell 2007;19:2391-2402. https://doi.org/10.1105/tpc.107.052258
  50. Rajasekarasetty MR, Gowda LS, Krishnamurthy NB, Ranganath HA. Poulation genetics of Drosophila nasuta nasuta, Drosophila nasuta albomicana and their hybrids. I. Karyotypic mosaicism in the hybrid populations. Genetics 1979;93:211-215. https://doi.org/10.1093/genetics/93.1.211
  51. Bijaya T, Ramachandra NB. Genetic variability assessed by competitive ability and ISSR markers in the members of the nasuta-albomicans complex of Drosophila. Nat Sci 2010;8:29-42.
  52. Radhika P. Studies on rapidly evolving genes in few members of nasuta albomicans complex of Drosophila. Ph.D. Dissertation. Mysore: University of Mysore, 2017.
  53. James JK, Abbott RJ. Recent, allopatric, homoploid hybrid speciation: the origin of Senecio squalidus (Asteraceae) in the British Isles from a hybrid zone on Mount Etna, Sicily. Evolution 2005; 59:2533-2547. https://doi.org/10.1111/j.0014-3820.2005.tb00967.x
  54. Kunte K, Shea C, Aardema ML, Scriber JM, Juenger TE, Gilbert LE, et al. Sex chromosome mosaicism and hybrid speciation among tiger swallowtail butterflies. PLoS Genet 2011;7:e1002274. https://doi.org/10.1371/journal.pgen.1002274
  55. Stemshorn KC, Reed FA, Nolte AW, Tautz D. Rapid formation of distinct hybrid lineages after secondary contact of two fish species (Cottus sp.). Mol Ecol 2011;20:1475-1491. https://doi.org/10.1111/j.1365-294X.2010.04997.x
  56. Elgvin TO, Hermansen JS, Fijarczyk A, Bonnet T, Borge T, Saether SA, et al. Hybrid speciation in sparrows II: a role for sex chromosomes? Mol Ecol 2011;20:3823-3837. https://doi.org/10.1111/j.1365-294X.2011.05182.x