• Title/Summary/Keyword: 3D computer modeling

Search Result 510, Processing Time 0.026 seconds

IGRINS : Mirror Mounts Optomechanical Design

  • Rukdee, Surangkhana;Park, Chan;Lee, Sung-Ho;Jaffe, Daniel T.;Lee, Han-Shin;Oh, Hee-Young;Jung, Hwa-Kyung;Yuk, In-Soo;Strubhar, Joseph;Kim, Kang-Min;Chun, Moo-Young
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.155.1-155.1
    • /
    • 2011
  • The Korea Astronomy and Space Science Institute (KASI) and the Department of Astronomy at the University of Texas at Austin (UT) are developing a near infrared wide-band high resolution spectrograph, IGRINS (Immersion Grating Infrared Spectrograph). The white-pupil design of the instrument optics uses 7 cryogenic mirrors including 3 aspherical off-axis collimators and 4 flat fold mirrors. Two of the 3 collimators are H- and K-band pupil transfer mirrors and they are designed as compensators for the system alignment in each channel. Therefore, their mount design will be one of the most sensitive parts in the IGRINS optomechanical system. The other flat fold mirrors are designed within the limited area. Each of those includes the features of 3 axial hard points and 2 radial hard points with one spring plunger in order for the proper deflection of the mirror. The design work will include the computer-aided 3D modeling and finite element analysis (FEA) to optimize the structural stability and the thermal behavior of the mount models. The mount body will also include a tip-tilt and translation adjustment mechanism to be used as the alignment compensators.

  • PDF

Robust feature vector composition for frontal face detection (노이즈에 강인한 정면 얼굴 검출을 위한 특성벡터 추출법)

  • Lee Seung-Ik;Won Chulho;Im Sung-Woon;Kim Duk-Gyoo
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.42 no.6
    • /
    • pp.75-82
    • /
    • 2005
  • The robust feature vector selection method for the multiple frontal face detection is proposed in this paper. The proposed feature vector for the training and classification are integrated by means, amplitude projections, and its 1D Harr wavelet of the input image. And the statistical modeling is performed both for face and nonface classes. Finally, the estimated probability density functions (PDFs) are applied for the detection of multiple frontal faces in the still image. The proposed method can handle multiple faces, partially occluded faces, and slightly posed-angle faces. And also the proposed method is very effective for low quality face images. Experimental results show that detection rate of the propose method is $98.3\%$ with three false detections on the testing data, SET3 which have 227 faces in 80 images.

A Study on the Architectural Design Utility of Object-based CAD System (객체기반 CAD 시스템의 건축설계적 효용에 관한 연구)

  • Yoo, Chang-Geun
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.2 no.1
    • /
    • pp.9-15
    • /
    • 2002
  • As architectural forms tend to be large-scaled, high-storied and complicated, use of computer for processing design information has been generalized. However, CAD use in the process of developing architectural design has been neglected greatly in the educational field of architectural field due to the surging of recognition that it may limit the essential property of architectural design. It may be resulted from the limitation of CAD system, that is, it is because of tardy speed of application development for the related areas with the lack of simplicity and clarity of flexibility to be secured on the drawing and user interface. Recent CAD systems, however, overcome such a limitation, convert into object-based design from entity-based drawing, drafting and modeling for implementing design concept of architects and it connects with internet linked to superspeed information communication network and changes process and stream of architectural design. Therefore, this study deals with utility of object based CAD system with products of Autodesk Co. and consequently obtain the following conclusions. First, it expands architect's design areas by supporting cooperative design system based on model-based architectural design and internet. Second, it reduces consumption of personal and material resources and time in the process of drawing production for improving architectural design works. Third, it can reduce the frequent design changes by improving understanding of architectural space with visualization of immediate 3D information, escaping from traditional methods to deliver design information to building owner through 2D drawing or model and perspective drawing requiring much cost and time. Fourth, it keeps exactness without omission or duplication of design information and generate and renew information of all related drawings on a drawing. Fifth, it is possible to change difficult and boring architectural design work into a pleasure owing to immediate modeling and drawing of design idea. In addition, digital drawing generated by using object-based CAD system can playa role of establishing Urban Information System to be used for protecting from building in disaster and urban disasters in connection with GIS numerical map and be used for reference of all kinds of information required fro post-management of buildings. However, what is more important is that surplus time from introduction of object-based CAD system should be used for consideration to be recognized as a good space and building built as a product of this project for comfort to urban people.

  • PDF

FTFM: An Object Linkage Model for Virtual Reality (가상현실을 위한 객체 연결 모델)

  • Ju, U-Seok;Choe, Seong-Un;Park, Gyeong-Hui;Lee, Hui-Seung
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.1
    • /
    • pp.95-106
    • /
    • 1996
  • The most fundamental difference between general three dimensional computer graphics technology and virtual reality technology lies in the degree of realism as we feel, and thus the virtual reality method heavily relies on such tolls as data gloves, 3D auditory system to enhance human perception and recognition. Although these tolls are valid for such purpose, more essential ingredient. This paper provides further realism by modeling active interactions between the objects inside scenes. For this purpose, this paper proposes and implements a field model where the virtual reality space is treated as a physical field defined on the characteristic radius of stimulus and sense corresponding to the individual object. In the field model, the rule of cause and effect as an essential feature of the realism can be interpreted simply as an energy exchange between objects and consequently, variation on the radius information together with behavioral logic alone can build the virtual environment where each object can react to other objects actively and controllably.

  • PDF

A Study of Guide System for Cerebrovascular Intervention (뇌혈관 중재시술 지원 가이드 시스템에 관한 연구)

  • Lee, Sung-Gwon;Jeong, Chang-Won;Yoon, Kwon-Ha;Joo, Su-Chong
    • Journal of Internet Computing and Services
    • /
    • v.17 no.1
    • /
    • pp.101-107
    • /
    • 2016
  • Due to the recent advancement in digital imaging technology, development of intervention equipment has become generalize. Video arbitration procedure is a process to insert a tiny catheter and a guide wire in the body, so in order to enhance the effectiveness and safety of this treatment, the high-quality of x-ray of image should be used. However, the increasing of radiation has become the problem. Therefore, the studies to improve the performance of x-ray detectors are being actively processed. Moreover, this intervention is based on the reference of the angiographic imaging and 3D medical image processing. In this paper, we propose a guidance system to support this intervention. Through this intervention, it can solve the problem of the existing 2D medical images based vessel that has a formation of cerebrovascular disease, and guide the real-time tracking and optimal route to the target lesion by intervention catheter and guide wire tool. As a result, the system was completely composed for medical image acquisition unit and image processing unit as well as a display device. The experimental environment, guide services which are provided by the proposed system Brain Phantom (complete intracranial model with aneurysms, ref H+N-S-A-010) was taken with x-ray and testing. To generate a reference image based on the Laplacian algorithm for the image processing which derived from the cerebral blood vessel model was applied to DICOM by Volume ray casting technique. $A^*$ algorithm was used to provide the catheter with a guide wire tracking path. Finally, the result does show the location of the catheter and guide wire providing in the proposed system especially, it is expected to provide a useful guide for future intervention service.

Model-based Design and Verification of High-lift Control System Using a Performance Analysis Model (성능해석 모델을 활용한 고양력 제어시스템의 모델기반 설계 및 검증)

  • Cho, Hyunjun;Kim, Taeju;Kim, Eunsoo;Kim, Sangbeom;Lee, Joonwon
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.2
    • /
    • pp.49-62
    • /
    • 2022
  • The purpose of this paper was to present a model analysis-based design process and verification results for the high-lift control system of aircraft. For this, we used Matlab/Simulink, one of the most widely-used physical modeling tools. The high-lift control system can be divided into three domains. (i.e., Electronic control domain, Hydraulic actuation domain, and Mechanical power transmission domain) Based on this division, we modeled each of the major domains and sub-components, and integrated them to complete the complicated system model. During the development process, each model block was tuned by referring to the results of pre-test and parts acceptance tests. As a result, the entire performance model and the developed system were completely verified, through unit components and system integrated performance tests. Finally, we summarize the process and results applied to the design process of high-lift control system and present future work.

Impedance Calculation of Power Distribution Networks for High-Speed DRAM Module Design (고속DRAM모듈 설계에 대한 전원평면의 임피던스계산)

  • Lee, Dong-Ju;Younggap You
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.3
    • /
    • pp.49-60
    • /
    • 2002
  • A systematic design approach for Power distribution network (PDN) is presented aiming at applications to DRAM module designs. Three main stages are comprised in this design approach: modeling and simulation of a PDN based on a two-dimensional transmission line structure employing a partial element equivalent circuit (PEEC); verification of the simulation results through comparison to measured values; and design space scanning with PDN parameters. Impedance characteristics for do-coupling capacitors are analyzed to devise an effective way to stabilize power and ground plane Performance within a target level of disturbances. Self-impedance and transfer-impedance are studied in terms of distance between circuit features and the size of do-coupling capacitors. A simple equation has been derived to find the do-coupling capacitance values yielding impedance lower than design target, and thereby reducing the overall computation time. The effectiveness of the design methodology has been demonstrated using a DRAM module with discrete do-coupling capacitors and a strip structure.

An Enhancement Technique for Separation of Direct Light and Global Light Using High Frequency Illumination pattern (고주파 조명패턴을 사용한 직접광과 간접광의 분리성능 향상 기법)

  • Jo, Mi-Ri-Na;Park, Dong-Gyu
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.9
    • /
    • pp.1262-1272
    • /
    • 2009
  • In computer graphics, there exist many studies about illumination and radiance for a realistic description of the 3D modeling and rendering. When we see a scene, the scene is lit by a source of light and the radiance of the points by a source in the scene. The radiance has direct light and glight component. The direct light gets lights directly from light source, but the global light gets lights indirectly by interreflections among complicated geometrical components. In this paper, we studied a method for increasing the accuracy of separating direct light and global light components from a scene by using high frequency illumination pattern. For experiments, we applied the separating method of Nayar's and found the best configurations for the separation through the experiments. We improved the separation accuracy of direct and global light by measuring the value of unilluminated area, which depends on the characteristics of object. Furthermore, we enhanced invisible scene of the global light by applying the image filtering technique.

  • PDF

Does the prosthesis weight matter? 3D finite element analysis of a fixed implant-supported prosthesis at different weights and implant numbers

  • Tribst, Joao Paulo Mendes;Dal Piva, Amanda Maria de Oliveira;Borges, Alexandre Luiz Souto;Rodrigues, Vinicius Aneas;Bottino, Marco Antonio;Kleverlaan, Cornelis Johannes
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.2
    • /
    • pp.67-74
    • /
    • 2020
  • PURPOSE. This study evaluated the influence of prosthesis weight and number of implants on the bone tissue microstrain. MATERIALS AND METHODS. Fifteen (15) fixed full-arch implant-supported prosthesis designs were created using a modeling software with different numbers of implants (4, 6, or 8) and prosthesis weights (10, 15, 20, 40, or 60 g). Each solid was imported to the computer aided engineering software and tetrahedral elements formed the mesh. The material properties were assigned to each solid with isotropic and homogeneous behavior. The friction coefficient was set as 0.3 between all the metallic interfaces, 0.65 for the cortical bone-implant interface, and 0.77 for the cancellous bone-implant interface. The standard earth gravity was defined along the Z-axis and the bone was fixed. The resulting equivalent strain was assumed as failure criteria. RESULTS. The prosthesis weight was related to the bone strain. The more implants installed, the less the amount of strain generated in the bone. The most critical situation was the use of a 60 g prosthesis supported by 4 implants with the largest calculated magnitude of 39.9 mm/mm, thereby suggesting that there was no group able to induce bone remodeling simply due to the prosthesis weight. CONCLUSION. Heavier prostheses under the effect of gravity force are related to more strain being generated around the implants. Installing more implants to support the prosthesis enables attenuating the effects observed in the bone. The simulated prostheses were not able to generate harmful values of peri-implant bone strain.

A Review of Computational Phantoms for Quality Assurance in Radiology and Radiotherapy in the Deep-Learning Era

  • Peng, Zhao;Gao, Ning;Wu, Bingzhi;Chen, Zhi;Xu, X. George
    • Journal of Radiation Protection and Research
    • /
    • v.47 no.3
    • /
    • pp.111-133
    • /
    • 2022
  • The exciting advancement related to the "modeling of digital human" in terms of a computational phantom for radiation dose calculations has to do with the latest hype related to deep learning. The advent of deep learning or artificial intelligence (AI) technology involving convolutional neural networks has brought an unprecedented level of innovation to the field of organ segmentation. In addition, graphics processing units (GPUs) are utilized as boosters for both real-time Monte Carlo simulations and AI-based image segmentation applications. These advancements provide the feasibility of creating three-dimensional (3D) geometric details of the human anatomy from tomographic imaging and performing Monte Carlo radiation transport simulations using increasingly fast and inexpensive computers. This review first introduces the history of three types of computational human phantoms: stylized medical internal radiation dosimetry (MIRD) phantoms, voxelized tomographic phantoms, and boundary representation (BREP) deformable phantoms. Then, the development of a person-specific phantom is demonstrated by introducing AI-based organ autosegmentation technology. Next, a new development in GPU-based Monte Carlo radiation dose calculations is introduced. Examples of applying computational phantoms and a new Monte Carlo code named ARCHER (Accelerated Radiation-transport Computations in Heterogeneous EnviRonments) to problems in radiation protection, imaging, and radiotherapy are presented from research projects performed by students at the Rensselaer Polytechnic Institute (RPI) and University of Science and Technology of China (USTC). Finally, this review discusses challenges and future research opportunities. We found that, owing to the latest computer hardware and AI technology, computational human body models are moving closer to real human anatomy structures for accurate radiation dose calculations.