DOI QR코드

DOI QR Code

Model-based Design and Verification of High-lift Control System Using a Performance Analysis Model

성능해석 모델을 활용한 고양력 제어시스템의 모델기반 설계 및 검증

  • Cho, Hyunjun (Space & Aeronautics Development Center, Hanwha Aerospace) ;
  • Kim, Taeju (Space & Aeronautics Development Center, Hanwha Aerospace) ;
  • Kim, Eunsoo (Space & Aeronautics Development Center, Hanwha Aerospace) ;
  • Kim, Sangbeom (Space & Aeronautics Development Center, Hanwha Aerospace) ;
  • Lee, Joonwon (Space & Aeronautics Development Center, Hanwha Aerospace)
  • 조현준 (한화에어로스페이스(주) 항공우주연구소 우주항공 R&D센터) ;
  • 김태주 (한화에어로스페이스(주) 항공우주연구소 우주항공 R&D센터) ;
  • 김은수 (한화에어로스페이스(주) 항공우주연구소 우주항공 R&D센터) ;
  • 김상범 (한화에어로스페이스(주) 항공우주연구소 우주항공 R&D센터) ;
  • 이준원 (한화에어로스페이스(주) 항공우주연구소 우주항공 R&D센터)
  • Received : 2022.01.11
  • Accepted : 2022.03.17
  • Published : 2022.04.30

Abstract

The purpose of this paper was to present a model analysis-based design process and verification results for the high-lift control system of aircraft. For this, we used Matlab/Simulink, one of the most widely-used physical modeling tools. The high-lift control system can be divided into three domains. (i.e., Electronic control domain, Hydraulic actuation domain, and Mechanical power transmission domain) Based on this division, we modeled each of the major domains and sub-components, and integrated them to complete the complicated system model. During the development process, each model block was tuned by referring to the results of pre-test and parts acceptance tests. As a result, the entire performance model and the developed system were completely verified, through unit components and system integrated performance tests. Finally, we summarize the process and results applied to the design process of high-lift control system and present future work.

본 논문에서는 항공기 고양력 제어시스템의 모델해석 기반 설계과정 및 검증결과를 제시한다. 이를 위하여 가장 많이 사용되는 상용 물리모델 툴 중 하나인 Matlab/Simulink를 활용하였다. 고양력 제어시스템은 기능 및 주요 에너지 흐름에 따라 전자제어, 유압구동, 그리고 기계동력전달 도메인의 3가지 도메인으로 나눌 수 있다. 우리는 이에 근거하여 주요 도메인 및 하위 부품 각각을 모델링 한 후 그것을 통합하여 전체 시스템 모델을 완성하였다. 모델링 과정에서 각각의 모델 블록은 자체 사전시험 및 부품의 수락시험 결과를 참고하여 튜닝하였으며, 결과적으로 전체 성능모델과 개발이 끝난 단위 제품 및 전체 시스템은 각각의 제품단위 시험 및 시스템 통합 성능시험을 통해 완전히 검증되었다. 마지막으로 고양력 제어시스템의 개발과정 및 결과를 요약하고 추후 과제를 제시할 것이다.

Keywords

References

  1. H. Cho, I. Lee, S. Kim, S. Park, and M. Yang, "No-failure Accelerated Life Test of Flap Actuating System using Weibull Distribution," Journal of Aerospace System Engineering, vol. 10, no. 1, pp. 51-58, Jun. 2016. https://doi.org/10.20910/JASE.2016.10.1.51
  2. H. Cho, M. Ahn, and C. Joo, "Model-based Design and Performance Analysis of Main Control Valve of Flap Control System," Journal of Aerospace System Engineering, vol. 13, no. 4, pp. 50-59, Jun. 2019. https://doi.org/10.20910/JASE.2019.13.4.50
  3. C. Joo, "Model design for performance analysis of leading-edge flap actuation system," Proc. of the SASE Fall Conference 2016, Muju, Korea, pp. 416-417, Nov. 2016.
  4. G. Yoon, H. Park, and K. Jang, "The state of the art and application of actuator in Aerospace," Journal of the Korean Society of Propulsion Engineers, vol. 14, no. 6, pp. 89-102, Dec. 2010.
  5. Y. Nam and H. Park, "Analysis on the dynamics characteristics of a DDV actuation system of a FBW aircraft," Journal of the Korean Society for Aeronautical and space Sciences, vol. 34, no. 3, pp. 74-80, Mar. 2006. https://doi.org/10.5139/JKSAS.2006.34.3.074
  6. M. Ahn and H. Cho, "Study on mathematical modeling for hydraulic control performance of main control valve having rectangular 슬롯s," Proc. of SASE Fall Conference 2017, Busan, Korea, pp. 399-400, Nov. 2017.
  7. H. Cho, C. Joo, K. Kim, and S. Park, "Performance analysis model for flap actuation system using MATLAB/Simulink," International Journal of Aerospace System Engineering, vol. 4, no. 1, pp. 13-21, Jun. 2017. https://doi.org/10.20910/IJASE.2017.4.1.13
  8. H. Park, S. Jang, S. Baek, and J. Byun, "HILS simulation model integration guidelines using Model-based design and MATLAB Simulink," Proc. of the Korean Society for Aeronautical and Space Sciences 2016, Jeju, Korea, pp. 796-797, Nov. 2016.
  9. D. Noh, Y. Yoon, D. Kim, S. Kim, S. Kim, S. Park, K. Choi, and J. Jang, "Development and application of thermal hydraulic simulation model for aircraft-EHA(Electro-Hydrostatic Actuator)," Journal of the Korean Society for Simulation, vol. 23, no. 2, pp. 17-24, 2014. https://doi.org/10.9709/JKSS.2014.23.2.017
  10. Y. Kim, H. Yoon, and S. Kim, "A Model-based design and testing approach for the UAV flight control computer," Proc. of the Korean Society for Aeronautical and Space Sciences 2015, Jeongseon, Korea, pp. 620-633, Apr. 2015.
  11. Y. Chung, S. Park, C. Jeong, Y. Jeong, and S. Yang, "A study on modeling and simulation of hydraulic system for a wheel loader using AMESim," Journal of the Korean Fluid Power Systems Society, vol. 7, no. 4, pp. 1-8, Dec. 2012.
  12. X. Pan, G. Wang, and Z. Lu, "Flow field simulation and a flow model of servo-valve 슬롯 valve orifice," Journal of the Energy Conversion and Management, vol. 52, no. 10, pp. 3249-3256, 2011. https://doi.org/10.1016/j.enconman.2011.05.010
  13. D. Han, Y. Kim, C. Lee, D. Lee, and K. Cho, "A study on verify of UAV flight control software simulated flight using model-based development and X-plane simulator," Journal of the Korean Society for Aeronautical and Space Sciences, vol. 43, no. 2, pp. 166-171, Feb. 2015. https://doi.org/10.5139/JKSAS.2015.43.2.166
  14. H. Cho, C. Joo, "Performance analysis model development of flap control system using multi-domain analysis platform," Proc. of International Conference on Control, Automation and System 2017, Jeju, Korea, pp. 1401-1406, Oct. 2017.
  15. R. S. Pressman and B. Maxim, Software Engineering: A Practitioner's Approach, 8th Ed., McGraw-Hill Education, New York, 2019.
  16. M. Hoffman and T. Beaumont, Application Development: Managing the project Life Cycle, 1st Ed., Mc Press., Boise, 1997.
  17. J. Oh, H. Moon, and S. Kwag, "Study on the vehicle software verification and testing methods according to the V-model," Proc. of the Korean Society of Automotive Engineers 2013, Jeju, Korea, pp. 1156-1159, May. 2013.
  18. J. Hilbe and A. Robinson, Methods of Statical Model Estimation, 1st Ed., CRC Press., Boca Raton, 2013.
  19. H. E. Merritt, Hydraulic Control Systems, 1st Ed., John Wiley & Sons Inc., New York, 1991.
  20. W. Borutzky, Bond graph modeling of engineering systems, 1st Ed., Springer, Berlin, 2011.
  21. J. Park, S. Baek, and Y. Kim, "A study on dynamic characteristics for systems selector valve in power package of KT-1 hydraulic system using AMESim," Proc. of the Korean Society for Aeronautical and Space Sciences 2011, Yongpyong, Korea, pp. 992-996, Nov. 2011.
  22. K. Lee and K. Song, "Research trends and development applications on mobile hydraulic using AMESim," Journal of the Korean Society of Fluid Power and Construction Equipments, vol. 9, no. 1, pp. 52-55, 2012.
  23. The LEE Company, Technical hydraulic handbook, 12th Ed., The LEE Company Technical Center, Westbrook, 2018.
  24. H. Cho, and T. Kim, "Development of integrated testing station for performance verification of flap control system," Proc. of the Korean Society for Aeronautical and Space Sciences 2019, Jeju, Korea, pp. 1348-1349, Nov. 2019