• Title/Summary/Keyword: 3D Monitor

Search Result 403, Processing Time 0.022 seconds

A 3d Viewing System for Real-time 3d Display General Monitors (범용 모니터에서 실시간 3d 디스플레이가 가능한 입체 뷰잉 시스템 개발)

  • Lee, Sang-Yong;Chin, Seong-Ah
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.49 no.2
    • /
    • pp.13-19
    • /
    • 2012
  • The techniques of 3d image processing have broadly used in the areas including movies, games, performances, exhibitions. In addition, increasing demands for practical uses have gradually extended to the areas of architecture, medicine, nuclear power plant. However, dominant techniques for 3d image processing seem to depend on multi-camera in which two stereo images are merged into one image. Also the pipeline has limitations to provide real-time 3d viewer in ubiquitous computing. It is not able to be applicable onto most general screens as well. In addition, the techniques can be utilized for the real-time 3d game play without a particular monitor or convertor. Hence, the research presented here is to aim at developing an efficient real-time 3d viewer using only mono camera which do not need post processing for editing as well.

3D Convolutional Neural Networks based Fall Detection with Thermal Camera (열화상 카메라를 이용한 3D 컨볼루션 신경망 기반 낙상 인식)

  • Kim, Dae-Eon;Jeon, BongKyu;Kwon, Dong-Soo
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.1
    • /
    • pp.45-54
    • /
    • 2018
  • This paper presents a vision-based fall detection system to automatically monitor and detect people's fall accidents, particularly those of elderly people or patients. For video analysis, the system should be able to extract both spatial and temporal features so that the model captures appearance and motion information simultaneously. Our approach is based on 3-dimensional convolutional neural networks, which can learn spatiotemporal features. In addition, we adopts a thermal camera in order to handle several issues regarding usability, day and night surveillance and privacy concerns. We design a pan-tilt camera with two actuators to extend the range of view. Performance is evaluated on our thermal dataset: TCL Fall Detection Dataset. The proposed model achieves 90.2% average clip accuracy which is better than other approaches.

R&D Trends Monitoring through Scanning Public R&D Investments: The Case of Information & Communication Technology (ICT) in Meteorology and Climatology

  • Heo, Yoseob;Kim, Hyunwoo;Kim, Jungjoon;Kang, Jongseok
    • Asian Journal of Innovation and Policy
    • /
    • v.5 no.3
    • /
    • pp.315-329
    • /
    • 2016
  • Public R&D investment information has diverse implications for researching R&D trends. Also, as it is important for the establishment of R&D policy to grasp the current situation and trends of R&D to improve science and technology level, science and technology information service system, such as NTIS (National Science & Technology Information Service), is operated at a national level in most countries. However, since the data forms provided by current NTIS are raw data, it is necessary to develop the R&D performance indicator or to use additional scientometric methods by analyzing scientific papers or scientific R&D project information for grasping R&D trends or analyzing R&D task results. Thus, this study applied public R&D investment information to investigate and monitor R&D trends in the field of information & communication technology (ICT) of meteorology and climatology by using NTIS data of Korea and NSF (National Science Foundation) data of USA.

A full-color anaglyph three-dimensional display system using active color filter glasses

  • Kim, Jong-Hyun;Kim, Young-Hoon;Hong, Ji-Soo;Park, Gil-Bae;Hong, Kee-Hoon;Min, Sung-Wook;Lee, Byoung-Ho
    • Journal of Information Display
    • /
    • v.12 no.1
    • /
    • pp.37-41
    • /
    • 2011
  • Presented herein is a novel stereoscopic three-dimensional (3D) display system with active color filter glasses. This system provides full-color 3D images by applying the time-multiplexing technique on the original anaglyph method. By switching between the opposite anaglyph statuses, a full-color anaglyph is presented. A liquid crystal panel from a 3D monitor serves as an active color filter operating at 120 Hz. A display panel and a color filter are connected to one graphic card as a dual-link system, for synchronization. To test the quality of this system, a left/right-eye image separation test and an experiment with stereoscopic images were carried out. Although there was some crosstalk and blur, the system, as expected, provided full-color 3D display. This system overcomes a monochromatic 3D image, which is the major weakness of the original anaglyph system.

Dense Thermal 3D Point Cloud Generation of Building Envelope by Drone-based Photogrammetry

  • Jo, Hyeon Jeong;Jang, Yeong Jae;Lee, Jae Wang;Oh, Jae Hong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.2
    • /
    • pp.73-79
    • /
    • 2021
  • Recently there are growing interests on the energy conservation and emission reduction. In the fields of architecture and civil engineering, the energy monitoring of structures is required to response the energy issues. In perspective of thermal monitoring, thermal images gains popularity for their rich visual information. With the rapid development of the drone platform, aerial thermal images acquired using drone can be used to monitor not only a part of structure, but wider coverage. In addition, the stereo photogrammetric process is expected to generate 3D point cloud with thermal information. However thermal images show very poor in resolution with narrow field of view that limit the use of drone-based thermal photogrammety. In the study, we aimed to generate 3D thermal point cloud using visible and thermal images. The visible images show high spatial resolution being able to generate precise and dense point clouds. Then we extract thermal information from thermal images to assign them onto the point clouds by precisely establishing photogrammetric collinearity between the point clouds and thermal images. From the experiment, we successfully generate dense 3D thermal point cloud showing 3D thermal distribution over the building structure.

Accuracy and Consistency of Three-Dimensional Motion Analysis System (3차원 동작분석 시스템의 정밀도와 측정 일관성)

  • Park, Young-Hoon;Youm, Chang-Hong;Seo, Kook-Woong
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.2
    • /
    • pp.83-92
    • /
    • 2005
  • Computer-assisted motional analysis is a popular method in biomechanical studies. Validation of the specific system and its measurement are fundamental to its application in the areas. Because the accuracy and consistency of a particular system provide the researchers with critical information to assist in making judgements regarding the degree to which inferences can be drawn from measurement data. The purpose of this study was to assess the accuracy and consistency of the Kwon3D motion analysis system. Validation parameters were five lengths from eight landmarkers in combination with the DLT reconstruction error values, digitizing monitor resolutions, and numbers of control points. With the best setting, Kwon3D's estimations of 260cm, 200cm, 140cm, 100cm, and 20cm were $260.33{\pm}.688cm$, $199.98{\pm}.625cm$, $139.89{\pm}.537cm$, $99.75{\pm}.466cm$, $20.08{\pm}.114$, respectively. There was no significant DLT error value difference between two monitor resolutions, but 0.27cm significant difference in 260cm estimation. There were significant differences in 260cm and 200cm estimations between with 33-control-point DLT error and with 17-control-point DLT error, but no in 140cm, 100cm, and 20cm estimations. Test-retest results showed that Kwon3D measurements were highly consistent with reliability coefficients alpha of .9263 and above.

An Evaluation Model Development of Technology Green Index(TGI) and It's Application to Defense R&D Projects (기술녹색도 평가모델 개발 및 적용사례)

  • Choi, Don-Oh;Lee, Hyo-Keun;Lim, Jong-Kwang;Lee, Hun-Gon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.299-308
    • /
    • 2009
  • In this paper, we have developed an evaluation model of technology green index(TGI) which includes 3 evaluation factors and 13 indicators. Furthermore, as presenting the degree of relative importance among evaluation factors and indicators for all R&D evaluation stages and all green technology areas, and applying the proposed model to 5 defense projects, we have found applicability of the model to evaluation of defense R&D projects. The results of evaluation using this model can be used to monitor the performance of project life cycle and develop R&D investment strategy of green technology using portfolio analysis.

A Study of Data Structure for Efficient Storing of 3D Point Cloud Data (3차원 점군자료의 효율적 저장을 위한 자료구조 연구)

  • Jang, Young-Woon;Cho, Gi-Sung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.2
    • /
    • pp.113-118
    • /
    • 2010
  • Recently, 3D-reconstruction for geographic information and study of geospatial information is progressing in various fields through national policy such as R&D business and pilot project. LiDAR system has a advantage of acquisition the 3D information data easily and densely so that is used in many different fields. Considering to characterist of the point data formed with 3D, it need a high specification CPU because it requires a number of processing operation for 2D form expressed by monitor. In contrast, 2D grid structure, like DEM, has a advantage on costs because of simple structure and processing speed. Therefore, purpose of this study is to solve the problem of requirement of more storage space, when LiDAR data stored in forms of 3D is used for 3D-geographic and 3D-buliding representation. Additionally, This study reconstitutes 2D-gird data to supply the representation data of 3D-geographic and presents the storage method which is available for detailed representation applying tree-structure and reduces the storage space.

Integrated editing system for 3D stereoscopic contents production (3차원 입체 콘텐츠 제작을 위한 통합 저작 시스템)

  • Yun, Chang-Ok;Yun, Tae-Soo;Lee, Dong-Hoon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.13 no.1
    • /
    • pp.11-21
    • /
    • 2008
  • Recently, it has shown an increased interest in 3D stereoscopic contents due to the development of the digital image media. Therefore, many techniques in 3D stereoscopic image generation have being researched and developed. However, it is difficult to generate high immersion and natural 3D stereoscopic contents, because the lack of 3D geometric information imposes restrictions in 2D image. In addition, control of the camera interval and rendering of the both eyes must be repetitively accomplished for the stereo effect being high. Therefore, we propose integrated editing system for 3D stereoscopic contents production using a variety of images. Then we generate 3D model from projective geometric information in single 2D image using image-based modeling method. And we offer real-time interactive 3D stereoscopic preview function for determining high immersion 3D stereo view. And then we generate intuitively 3D stereoscopic contents of high-quality through a stereoscopic LCD monitor and a polarizing filter glasses.

  • PDF

Filtering for reducing aliasing effects on auto-multiscopic monitor (무안경식 입체 다시점 모니터의 엘리어싱 감소를 위한 필터링 기법)

  • Park, Myung-Su;Yoo, Ji-Sang
    • Journal of Broadcast Engineering
    • /
    • v.15 no.4
    • /
    • pp.591-599
    • /
    • 2010
  • In this paper, we propose a disparity-adaptive filtering method to reduce view-aliasing and inter-perspective aliasing on auto-multiscopic 3D display. View aliasing by the subsampled multi-view images could happen if the resolution of an auto-multiscopic monitor is lower than that of the original multi-view images. Furthermore, multi-view images on auto-multiscopic monitor usually cause eye strain and fatigue because of inter-perspective aliasing by discontinuity that exists between viewpoints. The greater disparity value becomes, the stronger these types of aliasing could be. Thus, we design a lowpass filter whose cut-off frequency is determined adaptively to the number of intermediate reconstructed views and their disparity's strength. Though experimental results, we show that the proposed filtering algorithm could reduce the aliasing effect very efficiently by using DSCQS (double stimulus continuous quality scale method).