• Title/Summary/Keyword: 3D Image Scan

Search Result 227, Processing Time 0.026 seconds

3D Image Scan Automation Planning based on Mobile Rover (이동식 로버 기반 스캔 자동화 계획에 대한 연구)

  • Kang, Tae-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.8
    • /
    • pp.1-7
    • /
    • 2019
  • When using conventional 3D image scanning methods, it is common for image scanning to be done manually, which is labor-intensive. Scanning a space made up of complicated equipment or scanning a narrow space that is difficult for the user to enter, is problematic, resulting in quality degradation due to the presence of shadow areas. This paper proposes a method to scan an image using a rover equipped with a scanner in areas where it is difficult for a person to enter. To control the scan path precisely, the 3D image remote scan automation method based on the rover move rule definition is described. Through the study, the user can automate the 3D scan plan in a desired manner by defining the rover scan path as the rule base.

Study on 3D Image Scan-based MEP Facility Management Technology (3차원 이미지 스캔 기반 MEP 시설물 관리 기술 연구)

  • Kang, Tae Wook
    • Journal of KIBIM
    • /
    • v.6 no.4
    • /
    • pp.18-26
    • /
    • 2016
  • Recently, for the purpose of maintenance of facilities and energy, there have been growing cases of the 3D image scan-based reverse design technology mostly in the manufacturing field. In the MEP field, because of differences between design and physical model, the reverse technology has been utilized in factory facilities such as a semiconductor factory. Because 3D point clouds from scanning include accurate 3D object information, the efficiency of management works related to the complex MEP facilities can be enhanced. In this study, the reverse technology was surveyed, and the MEP facility management based on 3D image scanning was analyzed. Based on the results, a method of 3D image scan-based MEP facility management was proposed.

Generation of 3 Dimensional Image Model from Multiple Digital Photographs (다중 디지털 사진을 이용한 3차원 이미지 모델 생성)

  • 정태은;석정민;신효철;류재평
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1634-1637
    • /
    • 2003
  • Any given object on the motor-driven turntable is pictured from 8 to 72 different views with a digital camera. 3D shape reconstruction is performed with the integrated software called by Scanware from these multiple digital photographs. There are several steps such as configuration, calibration, capturing, segmentation, shape creation, texturing and merging process during the shape reconstruction process. 3D geometry data can be exported to cad data such as Autocad input file. Also 3D image model is generated from 3D geometry and texture data, and is used to advertise the model in the internet environment. Consumers can see the object realistically from wanted views by rotating or zooming in the internet browsers with Scanbull spx plug-in. The spx format allows a compact saving of 3D objects to handle or download. There are many types of scan equipments such as laser scanners and photogrammetric scanners. Line or point scan methods by laser can generate precise 3D geometry but cannot obtain color textures in general. Reversely, 3D image modeling with photogrammetry can generate not only geometries but also textures from associated polygons. We got various 3D image models and introduced the process of getting 3D image model of an internet-connected watchdog robot.

  • PDF

A Study of Utilizing 2D Photo Scan Technology to Efficiently Design 3D Models (2D 포토 스캔 기술을 활용한 효율적인 3D 모델링 제작방법 연구)

  • Guo, Dawei;Chung, Jeanhun
    • Journal of Digital Convergence
    • /
    • v.15 no.7
    • /
    • pp.393-400
    • /
    • 2017
  • Generally, in special effect video and 3D animation design process, character and background's 3D model is built by 3D program like MAYA or 3DS MAX. But in that manual modeling mode, model design needs much time and costs much money. In this paper, two experimental groups are set to prove use 2D photo scan modeling mode to build 3D model is effective and advanced. The first experimental group is modeling the same object by different experimental setting. The second experimental group is modeling the same background by different experimental setting. Through those two experimental groups, we try to find an effective design method and matters need attention when we use photo scan design mode. We aim to get the model from whole experiment and prove photo scan modeling mode is effective and advanced.

New Breast Measurement Technique and Bra Sizing System Based on 3D Body Scan Data

  • Oh, Seolyoung;Chun, Jongsuk
    • Journal of the Ergonomics Society of Korea
    • /
    • v.33 no.4
    • /
    • pp.299-311
    • /
    • 2014
  • Objective: The aim of this study was to develop a method for measuring breast size from three-dimensional (3D) body scan image data. Background: Previous bra studies established reference points by directly contacting the subject's naked skin to determine the boundary of the breast. But some subjects were uncomfortable with these types of measurements. This study examined noncontact methods of extracting breast reference points from 3D body scan data that were collected while subjects were wearing standardized soft bras. Method: 3D body scan data of 32 Korean women were analyzed. The subjects were selected from the Size Korea 2010 study. The breast landmarks were identified by graphic analyses of slicing contour lines on 3D body scan data. Results: Three methods determining bra cup size were compared. The M1 and M2 methods determined cup size by calculating the difference between bust girth and under-bust girth. The M3 method determined bra cup size by measuring breast arc length. Conclusion: The researchers proposed an anthropometric bra cup sizing system with the breast arc length (M3 method). It was measured from the geometrically defined landmarks on the 3D body scan slicing contour lines. The new bra cup size was highly correlated with breast depth. Application: The noncontact measuring method used in this study can be applied to the ergonomic studies measuring sensitive body parts.

Precision Measurement using Scan-line image Segmentation Method (스캔라인 영상분할기법에 의한 정밀도 측정에 관한 연구)

  • Park, Jung-Su;Youn, Jae-Woong;Jung, Won
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.7 no.4
    • /
    • pp.29-36
    • /
    • 2002
  • In this paper, a new edge detection method for area images is presented based on the scan-line image segmentation technology. The existing algorithms are lack of precision in its detections due to the noise factors such as depth perception and illumination problems when processing the 3D image into a 2D image. The general process of applying the scan-line method is to extract straight line components to determine the shape of the objects. However, we implement this method to an arc curve for precise detections. the paper proved precise detections that from off line to on line.

  • PDF

A ScanSAR Processing without Azimuth Stitching by Time-domain Cross-correlation (Azimuth Stitching 없는 ScanSAR 영상화: 시간영역 교차상관)

  • Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.3
    • /
    • pp.251-263
    • /
    • 2022
  • This paper presents an idea of ScanSAR image formation. For image formation of ScanSAR that utilizes the burst mode for raw signal acquisition, most conventional single burst methods essentially require a step of azimuth stitching which contributes to radiometric and phase distortions to some extent. Time-domain cross correlation could replace SPECAN which is most popularly used for ScanSAR processing. The core idea of the proposed method is that it is possible to relieve the necessity of azimuth stitching by an extension of Doppler bandwidth of the reference function to the burst cycle period. Performance of the proposed method was evaluated by applying it to the raw signals acquired by a spaceborne SAR system, and results satisfied all image quality requirements including 3 dB width, peak-to-sidelobe ratio (PSLR), compression ratio,speckle noise, etc. Image quality of ScanSAR is inferior to that of Stripmap in all aspects. However, it is also possible to improve the quality of ScanSAR image competitive to that of Stripmap if focused on a certain parameter while reduced qualities of other parameters. Thus, it is necessary for a ScanSAR processor to offer a great degree of flexibility complying with different requirements for different applications and techniques.

Impact of scanning strategy on the accuracy of complete-arch intraoral scans: a preliminary study on segmental scans and merge methods

  • Mai, Hai Yen;Mai, Hang-Nga;Lee, Cheong-Hee;Lee, Kyu-Bok;Kim, So-yeun;Lee, Jae-Mok;Lee, Keun-Woo;Lee, Du-Hyeong
    • The Journal of Advanced Prosthodontics
    • /
    • v.14 no.2
    • /
    • pp.88-95
    • /
    • 2022
  • PURPOSE. This study investigated the accuracy of full-arch intraoral scans obtained by various scan strategies with the segmental scan and merge methods. MATERIALS AND METHODS. Seventy intraoral scans (seven scans per group) were performed using 10 scan strategies that differed in the segmental scan (1, 2, or 3 segments) and the scanning motion (straight, zigzag, or combined). The three-dimensional (3D) geometric accuracy of scan images was evaluated by comparison with a reference image in an image analysis software program, in terms of the arch shape discrepancies. Measurement parameters were the intermolar distance, interpremolar distance, anteroposterior distance, and global surface deviation. One-way analysis of variance and Tukey honestly significance difference post hoc tests were carried out to compare differences among the scan strategy groups (α = .05). RESULTS. The linear discrepancy values of intraoral scans were not different among scan strategies performed with the single scan and segmental scan methods. In general, differences in the scan motion did not show different accuracies, except for the intermolar distance measured under the scan conditions of a 3-segmental scan and zigzag motion. The global surface deviations were not different among all scan strategies. CONCLUSION. The segmental scan and merge methods using two scan parts appear to be reliable as an alternative to the single scan method for full-arch intraoral scans. When three segmental scans are involved, the accuracy of complete arch scan can be negatively affected.

Classification of Side Somatotype of Upper Lateral Torso Analyzing 3D Body Scan Image of American Females (미국 여성의 3차원 바디 스캔 이미지 분석을 통한 상반신 측면체형 분류)

  • Na, Hyun-Shin
    • Journal of the Korean Society of Costume
    • /
    • v.57 no.4 s.113
    • /
    • pp.9-17
    • /
    • 2007
  • Somatotype is human body shape and physique type which can be classified not only by the size, but also by the shape or posture of the body. Postural variations in the alignment of the back, shoulder, and neck can have an adverse effect on the fit of garments designed to hang from the shoulders. There have been some previous studies about the lateral upper torso by analyzing photographic measurements. In this study, 3D body scan images were used to classify the side somatotype of upper lateral method even though they are major data in the classification of upper torso. This study focused on following objective.; 1) To apply new and developing technology into the apparel industry analyzing 3D body scan images. 2) To classify upper laterla torso using the data through the new improver technology, 3D body scanner. 3) To propose basic materials for well fitted garments for each type of figure. The test subjects for this study were two hundreds nine female aged 19 years and up who were recruited in Cornell university body scan research team. Seventeen Variables(12 angles, 5 lengths) out of 3D body scan data were measured based on these landmarks and applied to analyze. The result of factor analysis indicated that 6 factors were extracted through factor analysis and orthogonal rotation by the method of Varimax and those factors comprise 62.5% of total variance. And the somatotype of upper body is classified into 3 types of figures according to cluster analysis; Bent forward posture, Straight posture, Swayback posture. Future study could be addressed about the somatotype of body by the age group based on the large database with wide variety of age.

Accuracy of the Point-Based Image Registration Method in Integrating Radiographic and Optical Scan Images: A Pilot Study

  • Mai, Hai Yen;Lee, Du-Hyeong
    • Journal of Korean Dental Science
    • /
    • v.13 no.1
    • /
    • pp.28-34
    • /
    • 2020
  • Purpose: The purpose of this study was to investigate the influence of different implant computer software on the accuracy of image registration between radiographic and optical scan data. Materials and Methods: Cone-beam computed tomography and optical scan data of a partially edentulous jaw were collected and transferred to three different computer softwares: Blue Sky Plan (Blue Sky Bio), Implant Studio (3M Shape), and Geomagic DesignX (3D systems). In each software, the two image sets were aligned using a point-based automatic image registration algorithm. Image matching error was evaluated by measuring the linear discrepancies between the two images at the anterior and posterior area in the direction of the x-, y-, and z-axes. Kruskal-Wallis test and a post hoc Mann-Whitney U-test with Bonferroni correction were used for statistical analyses. The significance level was set at 0.05. Result: Overall discrepancy values ranged from 0.08 to 0.30 ㎛. The image registration accuracy among the software was significantly different in the x- and z-axes (P=0.009 and <0.001, respectively), but not different in the y-axis (P=0.064). Conclusion: The image registration accuracy performed by a point-based automatic image matching could be different depending on the computer software used.