• Title/Summary/Keyword: 3D (3Dimensional)

Search Result 6,384, Processing Time 0.037 seconds

Conversion Efficiency Enhancement of a-Si:H Thin-Film Solar Cell Using Periodic Patterned Substrate (주기적인 패턴 유리 기판을 사용한 비정질 실리콘 박막 태양전지의 효율 향상에 관한 연구)

  • Son, C.H.;Kim, K.M.;Kim, J.H.;Hong, J.;Kwon, G.C.
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.1
    • /
    • pp.55-61
    • /
    • 2012
  • We fabricated a-Si:H thin-film solar cell using the two-dimensional (2D) periodic patterned glass substrate. The use of a 3D periodic texture rather than a randomly texture at surface of TCO can result in higher short circuit current densities ($J_{sc}$). In order to analyze the optical effect of patterning glasses, ray-tracing simulations were performed. Also, p-i-n cells were deposited on patterned glasses as substrate by PECVD. UV-Vis spectroscopy, light I-V measurement were carried out for the optoelectronic characterization. The anti-reflective and light-trapping performance of patterning glass substrate was investigated by a comparison of experimental results with numerical simulations.

A Study of Improved Convergence on the Preisach Model Method by Using M-B Variables (M-B 변수를 이용한 Preisach 모델링의 수렴성 향상에 관한 연구)

  • Won, Hyuk;Park, Gwan-Soo;Chung, Hyun-Ju;Yang, Chang-Seob
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.1
    • /
    • pp.15-22
    • /
    • 2011
  • It is necessary to describe the hysteresis characteristics of magnetic material precisely for the analysis or design of system with ferromagnetic materials. Although Preisach model is regarded as the most accurate method to describe the hysteresis characteristics, it is not widely applied to the real systems because of some difficulties. The conventional Preisach model shows the numerical instabilities during the iterative computations because the density distribution obtained from the sets of M-H curves are strongly localized. To remove such numerical instabilities, M-B instead of M-H is adopted as an implementation variable in normal Preisach modeling. The two dimensional computations with hysteresis characteristics by using normal Preisach modeling are tested and the result showed that the modeling by using M-B variables showed better stabilities than M-H variables.

Usefulness of the Oblique Radiographic View in Ankle Fractures (족근 관절 골절에서 사면상 단순 방사선 사진의 유용성)

  • Cho, Duck-Yun;Song, Sang-Jun;Yoon, Hyung-Ku;Han, Soo-Hong;Chang, Ji-Hoon;Yoon, Byung-Ho
    • Journal of Korean Foot and Ankle Society
    • /
    • v.9 no.1
    • /
    • pp.94-98
    • /
    • 2005
  • Purpose: To compare the radiographic evaluations between two radiographic views (AP and lateral views) and four radiographic views (AP, lateral and both oblique views) in ankle fractures. Materials and Methods: From January 2000 to June 2002, 60 cases of ankle fractures were treated with open reduction and internal fixation and its followed up periods were at least 2 years. All cases were classified into three groups according to the method of preoperative radiographic evaluation. Two radiographic views (AP and lateral views) were taken in group A and four radiographic views (AP, lateral and both oblique views) were taken in group B. 12 Cases were evaluated with three dimensional computed tomography (3D CT). Four radiographic views and 3D CT were taken in group C. All cases were classified according to the Danis-Weber and Lauge-Hansen classification. Displacement of fracture fragment of medial, lateral, posterior malleolus and size of fracture fragment of posterior malleous were measured using picture archiving communication system (PACS). Results: Although kappa value between two or four radiographic views were good or excellent in Danis-Weber classification and Lauge-Hansen classification of ankle fractures, the displacements of medial and lateral malleoli were statistically different. Four radiographic views evalulated the degree of displacement of medial and lateral fragments more accurately compared to two radiographic views. Conclusion: Four radiographic views will be more useful than two radiographic views to decide the method of treatment and operation considering the displacement of fracture fragment.

  • PDF

Evaluation of the effects of miniscrew incorporation in palatal expanders for young adults using finite element analysis

  • Seong, Eui-Hyang;Choi, Sung-Hwan;Kim, Hee-Jin;Yu, Hyung-Seog;Park, Young-Chel;Lee, Kee-Joon
    • The korean journal of orthodontics
    • /
    • v.48 no.2
    • /
    • pp.81-89
    • /
    • 2018
  • Objective: The aim of this study was to evaluate the stress distribution and displacement of various craniofacial structures after nonsurgical rapid palatal expansion (RPE) with conventional (C-RPE), bone-borne (B-RPE), and miniscrew-assisted (MARPE) expanders for young adults using three-dimensional finite element analysis (3D FEA). Methods: Conventional, bone-borne, and miniscrew-assisted palatal expanders were designed to simulate expansion in a 3D FE model created from a 20-year-old human dry skull. Stress distribution and the displacement pattern for each circumaxillary suture and anchor tooth were calculated. Results: The results showed that C-RPE induced the greatest stress along the frontal process of the maxilla and around the anchor teeth, followed by the suture area, whereas B-RPE generated the greatest stress around the miniscrew, although the area was limited within the suture. Compared with the other appliances, MARPE caused relatively even stress distribution, decreased the stress on the buccal plate of the anchor teeth, and reduced tipping of the anchor teeth. Conclusions: The findings of this study suggest that the incorporation of miniscrews in RPE devices may contribute to force delivery to the sutures and a decrease in excessive stress on the buccal plate. Thus, MARPE may serve as an effective modality for the nonsurgical treatment of transverse maxillary deficiency in young adults.

Accuracy of new implant impression technique using dual arch tray and bite impression coping

  • Lee, Shin-Eon;Yang, Sung-Eun;Lee, Cheol-Won;Lee, Won-Sup;Lee, Su Young
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.4
    • /
    • pp.265-270
    • /
    • 2018
  • PURPOSE. The purpose of this in vitro study was to evaluate the accuracy of a new implant impression technique using bite impression coping and a dual arch tray. MATERIALS AND METHODS. Two implant fixtures were placed on maxillary left second premolar and first molar area in dentoform model. The model with two fixtures was used as the reference. The impression was divided into 2 groups, n=10 each. In group 1, heavy/light body silicone impression was made with pick up impression copings and open tray. In group 2, putty/light body silicone impression was made with bite impression copings and dual arch tray. The reference model and the master casts with implant scan bodies were scanned by a laboratory scanner. Surface tessellation language (STL) datasets from test groups was superimposed with STL dataset of reference model using inspection software. The three-dimensional deviation between the reference model and impression models was calculated and illustrated as a color-map. Data was analyzed by independent samples T-test of variance at ${\alpha}=.05$. RESULTS. The mean 3D implant deviations of pick up impression group (group 1) and dual arch impression group (group 2) were 0.029 mm and 0.034 mm, respectively. The difference in 3D deviations between groups 1 and 2 was not statistically significant (P=.075). CONCLUSION. Within limitations of this study, the accuracy of implant impression using a bite impression coping and dual arch tray is comparable to that of conventional pick-up impression.

A forging die design to improve the flower shape of flange bolt (플랜지 볼트의 플라워 형상 결함 개선을 위한 단조 금형설계)

  • Kim, Kwan-Woo;Lee, Geun-Tae;Cho, Hae-Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.4
    • /
    • pp.314-319
    • /
    • 2016
  • Flange bolt has a circular flange under the head that acts like a washer to distribute the clamping load over a large area. Flange bolt has usually been manufactured by cold forging. Flower shape defect occurs in the flange forging stage. This defect causes lack of dimensional accuracy and low quality. So it is needed to improve these forging defects. In this study, die design method for flower shape defect of flange bolt was suggested. In order to improve flower shape defect, inner diameter of the addition die in conventional forging process was modified. The forging process with applied modified die was simulated by commercial FEM code DEFORM-3D. The simulated results for modified die were confirmed by experimental trials with the same condition.

Clinical Study on Lobaplatin Combined with 5-Fu and Concurrent Radiotherapy in Treating Patients with Inoperable Esophageal Cancer

  • Jia, Xiao-Jing;Huang, Jing-Zi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.15
    • /
    • pp.6595-6597
    • /
    • 2015
  • Objective: To investigate short- and long-term treatment effects and side reactions of lobaplatin plus 5-Fu combined and concurrent radiotherapy in treating patients with inoperable middle-advanced stage esophageal cancer. Methods: Sixty patients with middle-advanced stage esophageal squamous cell cancer were retrospectively analyzed. All patients were administered lobaplatin (50 mg intravenously) for 2 h on day 1, and 5-Fu ($500mg/m^2$) injected intravenously from day 1 to 5 for 1 cycle, in an interval of 21 days for totally 4 cycles. At the same time, late-course accelerated hyperfractionated three-dimensional conformal radiotherapy was performed. Patients were firstly treated with conventional fractionated irradiation (1.8 Gy/d, 5 times/week, a total of 23 treatments, and DT41.4 Gy), and then treated with accelerated hyperfractionated irradiation (1.5 Gy, 2 times/d, a total of 27 Gy in 9 days, an entire course of 6-7 weeks, and DT 68.4Gy). Results: All patients completed treatment, including 10 complete response (CR), 41 partial response (PR), 7 stable disease (SD), and 2 progressive disease (PD). The total effective rate was 85.0% (51/60). Thirty-nine patients had an increased KPS score. One-, 2-, and 3-year survival rates were 85.3%, 57.5%, and 41.7%, respectively. The median survival time was 27 months. The adverse reactions included myelosuppression, which was mainly degree I and II. The occurrence rate of radiation esophagitis was 17.5%. No significant hepatic or renal toxicity was observed. Conclusion: Lobaplatin plus 5-Fu combined with concurrent radiotherapy is safe and effective in treating patients with middle-advanced stage esophageal cancer. However, this result warrants further evaluation by randomized clinical studies.

The Stereo Camera Measurement of Point Cloud on 3D Object and the Calculation of Volume Based on Irregular Triangular Mesh (스테레오 카메라와 측정에 의한 3D 대상체 포인트 클라우드의 불규칙 삼각 매싱 기반 체적 계산)

  • Lee, Young-Dae;Cho, Sung-Youn;Kim, Kyung;Lee, Dong-Gyu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.4
    • /
    • pp.153-159
    • /
    • 2012
  • For the construction of safe and clear urban environment, it is necessary that we identify the rubbish waste volume and we know the accuracy volume. In this paper, we proposed the algorithm computes the waste volume periodically for the way of waste repository standard. After stereo camera calibration, we obtained the point cloud on the surface of the object and took this as the input of the calculation algorithm of the object volume. We proposed the volume calculation algorithms based on the non-uniform triangular meshing methods and verified the validity of the algorithm through simulation and real experiments. The proposed algorithm can be used not only as the volume calculation of the waste repository but also as the general volume calculation of a three dimensional object.

Electrical Resistivity Methods in Korea (한국의 전기비저항탐사)

  • Kim, Hee-Joon
    • Economic and Environmental Geology
    • /
    • v.39 no.4 s.179
    • /
    • pp.473-483
    • /
    • 2006
  • Although application of electrical methods in Korea began with observation of self potentials before World War II, the methods were developed slowly by the beginning of 1980's when a major burst of development activity took place. DC resistivity methods are applied in Korea more to geotechnical problems rather than to environmental ones unlike other developed countries. As with every other branch of technology, the evolving speed of the silicon chip and of streaming data to hard disk has revolutionized data collection and noise reduction processing. The last two decades saw major advances in data collection, processing, and interpretation of electrical data. Development of smooth-model two-dimensional (2D) resistivity inversion is one of the most visible changes to geophysical interpretation of the last 40 years and is now routinely applied to apparent resistivity data. The ability to represent resistivities in section rather than pseudosection view has revolutionized interpretation. Although calculation of sensitivities for general electromagnetic problems require numerous forward modelings, DC resistivity methods can enjoy computational efficiencies if sources and receivers occupy the same position, and previously intractable 3D inversion is now becoming available.

A 3D RVE model with periodic boundary conditions to estimate mechanical properties of composites

  • Taheri-Behrooz, Fathollah;Pourahmadi, Emad
    • Structural Engineering and Mechanics
    • /
    • v.72 no.6
    • /
    • pp.713-722
    • /
    • 2019
  • Micromechanics is a technique for the analysis of composites or heterogeneous materials which focuses on the components of the intended structure. Each one of the components can exhibit isotropic behavior, but the microstructure characteristics of the heterogeneous material result in the anisotropic behavior of the structure. In this research, the general mechanical properties of a 3D anisotropic and heterogeneous Representative Volume Element (RVE), have been determined by applying periodic boundary conditions (PBCs), using the Asymptotic Homogenization Theory (AHT) and strain energy. In order to use the homogenization theory and apply the periodic boundary conditions, the ABAQUS scripting interface (ASI) has been used along with the Python programming language. The results have been compared with those of the Homogeneous Boundary Conditions method, which leads to an overestimation of the effective mechanical properties. According to the results, applying homogenous boundary conditions results in a 33% and 13% increase in the shear moduli G23 and G12, respectively. In polymeric composites, the fibers have linear and brittle behavior, while the resin exhibits a non-linear behavior. Therefore, the nonlinear effects of resin on the mechanical properties of the composite material is studied using a user-defined subroutine in Fortran (USDFLD). The non-linear shear stress-strain behavior of unidirectional composite laminates has been obtained. Results indicate that at arbitrary constant stress as 80 MPa in-plane shear modulus, G12, experienced a 47%, 41% and 31% reduction at the fiber volume fraction of 30%, 50% and 70%, compared to the linear assumption. The results of this study are in good agreement with the analytical and experimental results available in the literature.