References
- Aboudi, J. (1990), "Micromechanical prediction of initial and subsequent yield surfaces of metal matrix composites", J. Plasticity, 6(4), 471-484. https://doi.org/10.1016/0749-6419(90)90014-6.
- Aboudi, J. (2013), Mechanics of Composite Materials: A Unified Micromechanical Approach, Elsevier, The Netherlands.
- Adams, D.F. and Crane, D.A. (1984), "Finite element micromechanical analysis of a unidirectional composite including longitudinal shear loading", Comput. Struct., 18(6), 1153-1165. https://doi.org/10.1016/0045-7949(84)90160-3.
- Ahmadi, I. (2017), "Micromechanical failure analysis of composite materials subjected to biaxial and off-axis loading", Struct. Eng. Mech., 62(1), 43-54. https://doi.org/10.12989/sem.2017.62.1.043
- Aliabadi, M.H. (2015), Woven Composites, Imperial College Press, London, United Kingdom.
- Allen, D.H. and Boyd, J.G. (1993), "Convergence rates for computational predictions of stiffness loss in metal matrix composites", Composite Materials and Structures, AMD 179/AD 37, ASME, New York, USA. 31-45.
- Bakhvalov, N.S. and Panasenko, G.P. (1984), Homogenization in Periodic Media, Mathematical Problems of the Mechanics of Composite Materials, Nauka, Moscow, Russia.
- Belkacem, A., Tahar, H.D., Abderrezak, R., Amine, B.M., Mohamed, Z. and Boussad, A. (2018), "Mechanical buckling analysis of hybrid laminated composite plates under different boundary conditions", Struct. Eng. Mech., 66(6), 761-769. https://doi.org/10.12989/sem.2018.66.6.761.
- Bensoussan, A., Lions, J.L. and Papanicolaou, G. (2011), Asymptotic Analysis for Periodic Structures, American Mathematical Society, Providence, Rhode Island, USA.
- Bigelow, C.A. (1993), "Thermal residual stresses in a siliconcarbide/titanium [0/90] laminate", J. Compos. Technol. Res., 15(4), 304-310. https://doi.org/10.1520/CTR10383J.
- Bonora, N., Costanzi, M., Newaz, G. and Marchetti, M. (1994), "Microdamage effects on the overall response of long fibre/metal-matrix composites", Compos., 25(7), 575-582. https://doi.org/10.1016/0010-4361(94)90187-2.
- Chamis, C.C. (1983), "Simplified composite micromechanics for hygral, thermal and mechanical properties", SAMPE Quarterly, 14-23. https://ntrs.nasa.gov/search.jsp?R=19830011546.
- Chen, Y., Xia, Z. and Ellyin, F. (2001), "Evolution of Residual Stresses Induced during Curing Processing Using a Viscoelastic Micromechanical Model", J. Compos. Mater., 35(6), 522-542. https://doi.org/10.1177%2F002199801772662145. https://doi.org/10.1177/002199801772662145
- Chu, X., Yu, C., Xiu, C. and Xu, Y. (2015), "Two scale modeling of behaviors of granular structure: size effects and displacement fluctuations of discrete particle assembly", Struct. Eng. Mech., 55(2), 315-334. https://doi.org/10.12989/sem.2015.55.2.315.
- Ebrahimi, F. and Habibi, S. (2018), "Thermal effects on nonlinear dynamic characteristics of polymer-CNT-fiber multiscale nanocomposite structures", Struct. Eng. Mech., 67(4), 403-415. https://doi.org/10.12989/sem.2018.67.4.403.
- Ellyin, F., Xia, Z. and Chen, Y. (2002), "Viscoelastic micromechanical modeling of free edge and time effects in glass fiber/epoxy cross-ply laminates", Composites Part A Appl. Sci. Manufact., 33(3), 399-409. https://doi.org/10.1016/S1359-835X(01)00112-9.
- Gilat, A., Goldberg, R.K. and Roberts, G.D. (2007), "Strain Rate Sensitivity of Epoxy Resin in Tensile and Shear Loading", J. Aerosp. Eng., 20(2), 75-89. https://doi.org/10.1061/(ASCE)0893-1321(2007)20:2(75).
- Guedes, M. and Kikuchi, N. (1990), "Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods", Comput. Methods Appl. Mech. Eng., 83, 143-198. https://doi.org/10.1016/0045-7825(90)90148-F.
- Hamedi, M., Golestanian, H., Tadi Beni, Y. and Alasvand Zarasvand, K. (2018), "Evaluation of fracture energy for nanocomposites reinforced with carbon nanotubes using numerical and micromechanical methods", Mech. Adv. Mater. Struct., 1-9. https://doi.org/10.1080/15376494.2018.1432787.
- Hashin, Z. and Rosen, B.W. (1964), "The Elastic Moduli of Fiber-Reinforced Materials", J. Appl. Mech., 31, 223-232. https://doi.org/10.1115/1.3629590
- Hashin, Z. and Shtrikman, S. (1963), "A variational approach to the theory of the elastic behaviour of multiphase materials", J. Mech. Phys. Solids, 11, 127-140. https://doi.org/10.1016/0022-5096(63)90060-7.
- Hollister, S.J. and Kikuchi, N. (1992), "A comparison of homogenization and standard mechanics analyses for periodic porous composites", Comput. Mech., 10(2), 73-95. https://doi.org/10.1007/BF00369853.
- Hori, M. and Nemat-Nasser, S. (1999), "On two micromechanics theories for determining micro-macro relations in heterogeneous solids", Mech. Mater., 31(10), 667-682. https://doi.org/10.1016/S0167-6636(99)00020-4.
- Kenaga, D., Doyle, J.F. and Sun, C.T. (1987), "The characterization of boron/aluminum composite in the nonlinear range as an orthotropic elastic-plastic material", J. Compos. Mater., 21(6), 516-531. https://doi.org/10.1177/002199838702100603.
- Khodjet-Kesba, M., Benkhedda, A., Adda Bedia, E. and Boukert, B. (2018), "On transverse matrix cracking in composite laminates loaded in flexure under transient hygrothermal conditions", Struct. Eng. Mech., 67(2), 165-173. https://doi.org/10.12989/sem.2018.67.2.165.
- Liao, B., Tan, H., Zhou, J. and Jia, L. (2018), "Multi-scale modelling of dynamic progressive failure in composite laminates subjected to low velocity impact", Thin-Walled Struct., 131, 695-707. https://doi.org/10.1016/j.tws.2018.07.047.
- Lubineau, G. and Ladeveze, P. (2008), "Construction of a micromechanics-based intralaminar mesomodel, and illustrations in ABAQUS/Standard", Comput. Mater. Sci., 43(1), 137-145. https://doi.org/10.1016/j.commatsci.2007.07.050.
- Ma, J., Wriggers, P. and Li, L. (2016), "Homogenized thermal properties of 3D composites with full uncertainty in the microstructure", Struct. Eng. Mech., 57(2), 369-387. https://doi.org/10.12989/sem.2016.57.2.369.
- Moorthy, S. and Ghosh, S. (1998), "Particle cracking in discretely reinforced materials with the voronoi cell finite element model", J. Plasticity, 14(8), 805-827. https://doi.org/10.1016/S0749-6419(98)00024-2.
- Naghdinasab, M., Farrokhabadi, A. and Madadi, H. (2018), "A numerical method to evaluate the material properties degradation in composite RVEs due to fiber-matrix debonding and induced matrix cracking", Finite Elements Analysis Design, 146, 84-95. https://doi.org/10.1016/j.finel.2018.04.008.
- Needleman, A. and Tvergaard, V. (1993), "Comparison of Crystal Plasticity and Isotropic Hardening Predictions for Metal-Matrix Composites", J. Appl. Mech., 60, 70-76. https://doi.org/10.1115/1.2900781
- Nemat-Nasser, S. and Hori, M. (2013), Micromechanics: Overall Properties of Heterogeneous Materials, Elsevier, The Netherlands.
- Pindera, M.J. and Aboudi, J. (1988), "Micromechanical analysis of yielding of metal matrix composites", J. Plasticity, 4(3), 195-214. https://doi.org/10.1016/0749-6419(88)90010-1.
- Raghavan, P., Moorthy, S., Ghosh, S. and Pagano, N.J. (2001), "Revisiting the composite laminate problem with an adaptive multi-level computational model", Compos. Sci. Technol., 61, 1017-1040. https://doi.org/10.1016/S0266-3538(00)00230-X.
- Riley, M.B. and Whitney, J.M. (1966), "Elastic properties of fiber reinforced composite materials", AIAA J., 4(9), 1537-1542. https://doi.org/10.2514/3.3732.
- Sanchez-Palencia, E. (1980), Non-homogeneous Media and Vibration Theory, Lecture Notes in Physics Series Volume 127, Springer, Berlin, Germany.
- Shahzamanian, M.M., Tadepalli, T., Rajendran, A.M., Hodo, W.D., Mohan, R., Valisetty, R., Chung, P.W. and Ramsey, J.J. (2014), "Representative volume element based modeling of cementitious materials", J. Eng. Mater. Technol., 136(1), https://doi.org/10.1115/1.4025916.
- Shokrieh, M., Nasir, V. and Karimipour, H. (2012), "A micromechanical study on longitudinal strength of fibrous composites exposed to acidic environment", Mater. Design, 35, 394-403. https://doi.org/10.1016/j.matdes.2011.08.044.
- Simulia, A.V. (2013), "6.13 Documentation", Dassault System, Velizy-Villacoublay, France.
- Sun, C.T. and Chen, J.L. (1991), "A micromechanical model for plastic behavior of fibrous composites", Compos. Sci. Technol., 40(2), 115-129. https://doi.org/10.1016/0266-3538(91)90092-4.
- Sun, C.T. and Vaidya, R.S. (1996), "Prediction of composite properties from a representative volume element", Compos. Sci. Technol., 56, 171-179. https://doi.org/10.1016/0266-3538(95)00141-7.
- Suquet, P. (1987), Elements of Homogenization Theory for Inelastic Solid Mechanics, Homogenization Techniques for Composite Media, Springer-Verlag, Berlin, Germany.
- Tchalla, A., Belouettar, S., Makradi, A. and Zahrouni, H. (2013), "An ABAQUS toolbox for multiscale finite element computation", Compos. Part B Eng., 52, 323-333. https://doi.org/10.1016/j.compositesb.2013.04.028.
- Wu, W., Owino, J., Al-Ostaz, A. and Cai, L. (2014), "Applying periodic boundary conditions in finite element analysis", Simulia Community Conference, 707-719.
- Xia, Z., Chen, Y. and Ellyin, F. (2000), "A meso/micro-mechanical model for damage progression in glass-fiber/epoxy cross-ply laminates by finite-element analysis", Compos. Sci. Technol., 60, 1171-1179. https://doi.org/10.1016/S0266-3538(00)00022-1.
- Xia, Z., Ju, F. and Sasaki, K. (2007), "A general finite element analysis method for balloon expandable stents based on repeated unit cell (RUC) model", Finite Elements Anal. Design, 43(8), 649-658. https://doi.org/10.1016/j.finel.2007.01.001.
- Xia, Z., Zhang, Y. and Ellyin, F. (2003), "A unified periodical boundary conditions for representative volume elements of composites and applications", J. Solids Struct., 40(8), 1907-1921. https://doi.org/10.1016/S0020-7683(03)00024-6.
- Xia, Z., Zhou, C., Yong, Q. and Wang, X. (2006), "On selection of repeated unit cell model and application of unified periodic boundary conditions in micro-mechanical analysis of composites", J. Solids Struct., 43(2), 266-278. https://doi.org/10.1016/j.ijsolstr.2005.03.055.
- Xu, K. and Xu, X.W. (2008), "Finite element analysis of mechanical properties of 3D five-directional braided composites", Mater. Sci. Eng. A, 487(1-2), 499-509. https://doi.org/10.1016/j.msea.2007.10.030.
- Yahia, S.A., Amar, L.H.H., Belabed, Z. and Tounsi, A. (2018), "Effect of homogenization models on stress analysis of functionally graded plates", Struct. Eng. Mech., 67(5), 527-544. https://doi.org/10.12989/sem.2018.67.5.527.
- Yuan, Z. and Fish, J. (2008), "Toward realization of computational homogenization in practice", J. Numerical Methods Eng., 73(3), 361-380. https://doi.org/10.1002/nme.2074.
- Zhang, Y., Xia, Z. and Ellyin, F. (2005), "Nonlinear viscoelastic micromechanical analysis of fibre-reinforced polymer laminates with damage evolution", J. Solids Struct., 42(2), 591-604. https://doi.org/10.1016/j.ijsolstr.2004.06.021.
- Zuo, Z.H. and Xie, Y.M. (2015), "A simple and compact Python code for complex 3D topology optimization", Adv. Eng. Software, 85, 1-11. https://doi.org/10.1016/j.advengsoft.2015.02.006.