• 제목/요약/키워드: 3-morpholinosydnonimine

검색결과 26건 처리시간 0.028초

Inhibition of protein kinase CK2 facilitates cellular senescence by inhibiting the expression of HO-1 in articular chondrocytes

  • Kang Mi Kim;Dong Hyun Sohn;Koanhoi Kim;Young Chul Park
    • International Journal of Molecular Medicine
    • /
    • 제43권2호
    • /
    • pp.1033-1040
    • /
    • 2019
  • Protein kinase casein kinase 2 (CK2) is important in the regulation of cell proliferation and death, even under pathological conditions. Previously, we reported that CK2 regulates the expression of heme oxygenase-1 (HO-1) in stress-induced chondrocytes. In the present study, it was shown that CK2 is involved in the dedifferentiation and cellular senescence of chondrocytes. Treatment of primary articular chondrocytes with CK2 inhibitors, 4,5,6,7-terabromo-2-azabenzimidazole (TBB) or 5,6-dichlorobenzimidazole 1-β-D-ribofuranoside (DRB), induced an increase in senescence-associated β-galactosidase (SA-β-gal) staining. In addition, TBB reduced the expression of type II collagen and stimulated the accumulation of β-catenin, phenotypic markers of chondrocyte differentiation and dedifferentiation, respectively. It was also observed that the abrogation of CK2 activity by CK2 small interfering RNA induced phenotypes of chondrocyte senescence. The association between HO-1 and cellular senescence was also examined in CK2 inhibitor-treated chondrocytes. Pretreatment with 3-morpholinosydnonimine hydrochloride, an inducer of the HO-1 expression, or overexpression of the HO-1 gene significantly delayed chondrocyte senescence. These results show that CK2 is associated with chondrocyte differentiation and cellular senescence and that this is due to regulation of the expression of HO-1. Furthermore, the findings suggest that CK2 is crucial as an anti-aging factor during chondrocyte senescence.

The Change of Taurine Transport in Variable Stress States through the Inner Blood-Retinal Barrier using In Vitro Model

  • Kang, Young-Sook;Lee, Na-Young;Chung, Yeon-Yee
    • Biomolecules & Therapeutics
    • /
    • 제17권2호
    • /
    • pp.175-180
    • /
    • 2009
  • Taurine is the most abundant free amino acid in the retina and transported into retina via taurine transporter (TauT) at the inner blood-retinal barrier (iBRB). In the present study, we investigated whether the taurine transport at the iBRB is regulated by oxidative stress or disease-like state in a conditionally immortalized rat retinal capillary endothelial cell line (TR-iBRB) used as an in vitro model of iBRB. First, [$^3H$]taurine uptake and efflux by TR-iBRB were regulated in the presence of extracellular $Ca^{2+}$. [$^3H$]Taurine uptake was inhibited and efflux was enhanced under $Ca^{2+}$ free condition in the cells. In addition, oxidative stress inducing agents such as tumor necrosis factor-$\alpha$ (TNF-$\alpha$), lipopolysaccharide (LPS), diethyl maleate (DEM) and glutamate increased [$^3H$]taurine uptake and decreased [$^3H$]taurine efflux in TR-iBRB cells. Whereas, 3-morpholinosydnonimine (SIN-1), which is known to NO donor decreased [$^3H$]taurine uptake. Lastly, TR-iBRB cells exposed to high glucose (25 mM) medium and the [$^3H$]taurine uptake was reduced about 20% at the condition. Also, [$^3H$]taurine uptake was decreased by cytochalasin B, which is known to glucose transport inhibitor. In conclusion, taurine transport in TR-iBRB cells is regulated diversely at extracellular $Ca^{2+}$, oxidative stress and hyperglycemic condition. It suggested that taurine would play a role as a retinal protector in diverse disease states.

PKC Downstream of PI3-Kinase Regulates Peroxynitrite Formation for Nrf2-Mediated GSTA2 Induction

  • Kim, Sang-Geon;Kim, Sun-Ok
    • Archives of Pharmacal Research
    • /
    • 제27권7호
    • /
    • pp.757-762
    • /
    • 2004
  • The protective adaptive response to electrophiles and reactive oxygen species is mediated by the induction of phase II detoxifying genes including glutathione S-transferases (GSTs). NF-E2-related factor-2 (Nrf2) phosphorylation by protein kinase C (PKC) is a critical event for its nuclear translocation in response to oxidative stress. Previously, we have shown that peroxynitrite plays a role in activation of Nrf2 and Nrf2 binding to the antioxidant response element (ARE) via the pathway of phosphatidylinositol 3-kinase (PI3-kinase) and that nitric oxide synthase in hepatocytes is required for GSTA2 induction. In view of the importance of PKC and Pl3-kinase in Nrf2-mediated GST induction, we investigated the role of these kinases in peroxynitrite formation for GSTA2 induction by oxidative stress and determined the relationship between PKC and PI3-kinase. Although PKC activation by phorbol 12-myristate-13-acetate (PMA) did not increase the extents of constitutive and inducible GSTA2 expression, either PKC depletion by PMA or PKC inhibition by staurosporine significantly inhibited GSTA2 induction by tert-butylhydroquinone (t-SHa) a prooxidant chemical. Therefore, the basal PKC activity is req- uisite for GSTA2 induction. 3-Morpholinosydnonimine (SIN-1), which decomposes and yields peroxynitrite, induced GSTA2, which was not inhibited by PKC depletion, but slightly enhanced by PKC activation, suggesting that PKC promotes peroxynitrite formation for Nrf2-mediated GSTA2 induction. Treatment of cells with S-nitroso-N-acetyl-penicillamine (SNAP), an exogenous NO donor, in combination with t-BHQ may produce peroxynitrite. GSTA2 induction by SNAP + t-BHQ was not decreased by PKC depletion, but rather enhanced by PKC activation, showing that the activity of PKC might be required for peroxynitrite formation. LY294002 a P13-kinase inhibitor blocked GSTA2 induction by t-BHQ, which was reversed by PMA-induced PKC activation. These results provide evidence that PKC may playa role in formation of peroxynitrite that activates Nrf2 for GSTA2 induction and that PKC may serve an activator for GSTA2 induction downstream of PI3-kinase.

기니피그 유문부 윤상근의 서파 몇 자발적 수축에 대한 nitric oxide donor의 억제적 작용 (The inhibitory action of nitric oxide donor on the slow wave and spontaneous contraction in the guinea pig antral circular muscle)

  • 김태완;라준호;양일석
    • 대한수의학회지
    • /
    • 제40권4호
    • /
    • pp.691-699
    • /
    • 2000
  • We investigated the effects of nitric oxide (NO) donors, S-nitroso-L-cysteine (Cys-NO) and 3-morpholinosydnonimine hydrochloride (SIN-1), on the contractile and electrical activity of the circular muscle of guinea pig gastric antrum by using intracellular microelectrode technique. The gastric antral circular muscle showed spontaneous phasic contraction and slow wave of membrane potential. Cys-NO ($0.001{\sim}10{\mu}M$) and SIN-1 ($0.001{\sim}100{\mu}M$) reduced not only the tonic and phasic contraction but also the amplitude of slow wave in a concentration dependent manner. NO donors were more potent to inhibit phasic contraction than to do slow wave. These inhibitory effects of NO donors were mimicked by the membrane permeable guanosine-3',5'-cyclic monophosphate (cGMP) analogue, 8-bromo-cyclic GMP (8-br-cGMP, $10{\sim}300{\mu}M$). The inhibitory effects of SIN-1 and Cys-NO were antagonized by the guanylate cyclase inhibitor, 1H[ [1,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one (ODQ, $10{\mu}M$). These results suggest that the inhibitory effects of NO donors on the mechanical and electrical activity is mainly mediated by cGMP pathway.

  • PDF

국내산 법제 하수오의 라디칼 소거능 및 산화적 스트레스 개선 효과 (Free Radical Scavenging Effect and Oxidative Stress Protective Activity of Domestic Processed Polygoni Multiflori Radix)

  • 김현영;김준영;조은주;최지명;황정은;이희율;안민주;이진환;김윤근;고건희;구영민;오경렬;조계만
    • 한국식품영양과학회지
    • /
    • 제44권6호
    • /
    • pp.809-815
    • /
    • 2015
  • 본 연구에서는 국내산 법제 하수오 메탄올 추출물로부터 생리활성물질을 확인하였고, 추출물의 라디칼 소거능과 LLC-$PK_1$ cell을 이용한 산화적 스트레스 개선 효과를 살펴보았다. HPLC 분석 결과 4종의 생리활성물질인 2,3,5,4'-tetrahydroxystilbene 2-O-${\beta}$-D-glucoside, emodin, chrysophanol 및 rhein을 확인하였다. 특히 주요 화합물인 2,3, 5,4'-tetrahydroxystilbene 2-O-${\beta}$-D-glucoside는 115.02 mg/kg이었다. 법제 하수오 추출물의 DPPH, ABTS, hydroxyl 라디칼 소거능은 농도 의존적으로 증가하였다. 추출물의 $50{\mu}g/mL$ 처리 시 DPPH 라디칼 소거능은 48.4%, ABTS 라디칼 소거능은 57.9% 및 hydroxyl 라디칼 소거능은 81.2%로 나타내었다. 한편 LLC-$PK_1$ cell에서 각각의 NO, $O_2{^-}$, 및 $ONOO^-$ 생성물질인 pyrogallol, sodium nitroprusside(SNP) 및 morpholinosydnonimine(SIN-1) 처리에 의해 유도된 산화적 스트레스 상에서 세포 생존율은 감소하였다. 그러나 법제 하수오 메탄올 추출물은 농도 의존적으로 세포 독성을 저해하였다. 추출물의 $50{\mu}g/mL$ 처리 시 세포 생존율은 각각 82.1%(pyrogallol), 89.1%(SNP) 및 77.6%(SIN-1)였다.

무막줄기세포추출물의 LLC-PK1 세포에서의 산화적 스트레스 개선 효과 (Protective Effect of Membrane-Free Stem Cell Extract against Oxidative Stress in LLC-PK1 Cells)

  • 김민정;김지현;박혜숙;김영실;조은주
    • 한국산학기술학회논문지
    • /
    • 제20권8호
    • /
    • pp.303-312
    • /
    • 2019
  • 신장에서 발생한 산화적 스트레스는 조직을 손상시키고 이는 만성신장질환으로 이어질 수 있다. 본 연구에서는 LLC-$PK_1$ 신장세포를 이용하여 산화적 스트레스 개선 효과를 살펴보았다. LLC-$PK_1$ 세포에 무막줄기세포추출물을 처리했을 때 체내 항산화 단백질인 heme-oxygenase-1, thioredoxin reductase 1, 및 NADPH quinine oxidoreductase-1의 발현이 증가함을 확인하였다. LLC-$PK_1$에 산화적 스트레스를 유도하기 위하여 3-morpholinosydnonimine (SIN-1)을 처리한 결과 세포생존율이 감소하여 산화적 스트레스로 인해 세포가 손상됨을 확인하였다. 그러나 무막줄기세포추출물을 처리하였을 때 세포생존율이 증가하였으며, $2.5{\mu}g/mL$에서 세포생존율이 58.84%에서 64.43%까지 증가하였다. 또한 무막줄기세포추출물은 LLC-$PK_1$ 세포에서 SIN-1으로 유도된 염증 및 세포사멸을 조절하였다. 염증 관련 단백질인 inducible nitric oxide synthase와 cyclooxygenase-2는 무막줄기세포 추출물을 처리했을 때 단백질 발현이 감소하였고, 세포사멸과 관련된 B-cell lymphoma-2-associated X protein/B-cell lymphoma-2 비율과 cleaved caspase-3, cleaved-poly (ADP-ribose) polymeras의 단백질 발현이 감소함을 확인하였다. 결과적으로 무막줄기세포출물은 SIN-1을 처리한 LLC-$PK_1$ 세포에서 산화적 스트레스에 대한 보호 효과가 있음을 알 수 있었으며, 이들 결과를 바탕으로 무막줄기세포추출물의 항산화 기능성 소재로서의 활용 가능성을 확인하였다.

자유라디칼이 백서의 뇌별아교세포에 미치는 독성작용 (Cytotoxic Effect of Free Radical on Rat Primary Astrocytes)

  • 장혁;김명선;박현영;김요식;조광호;정헌택;박래길
    • Toxicological Research
    • /
    • 제16권1호
    • /
    • pp.1-8
    • /
    • 2000
  • Astrocytes generate free radicals including nitric oxide (NO) and reactive oxygen intermediates(ROI) which in turn play roles in the pathogenesis of degenerative diseases and sclerotic changes of the brain. This study was designed to evaluate the mechanism that free radicals contribute to the cytotoxicty of rat neonatal primary astrocytes. Treatment with NO donors alone including soldium nitroprusside(SNP), S-nitrosoglucathinoe (GSNO), and S-nitroso-n-acetylpenicillamine (SNAP) showed a little effect on the death of rat neonatal primary astrocytes, whereas SNP markedly induced the death of RAW 264.7 cells. ROI inculding H2O2 and O2 donor also slightly induced the death of rat primary astrocytes. However, 3-morpholinosydnonimine(SIN-1), a donor of peroxynitrite (ONOO), which is a reactive compound of NO with superoxide, significantly decreased the viability of rat primary astrocytes in a dose-dependent manner. Cells were retarded in outgrowth of viability of cellular processes with cell shrinkage and detachment from culture dishes. Hoechst staining demonstrated that SIN-1-induced cell death might be due to an apoptosis which was characterized by nuclear condensation and fragmentation. SIN-1-induced apoptosis was prevented by the pretreatment with superoxide dismutase (SOD) and catalase in rat primary astorocytes. Furthermore, prevention of the generation of reduced glutathione (GSH) by DL-buthionine-[S, R]-sulfoximine (BSO) aggravated the cytotoxic effects of SNP, benzene triol, and SIN-1 in rat primary astrocytes. Taken together, it is suggested that peroxynitrite may be a major effector of apoptosis and cellular antioxidant system is important for cell survival in rat prima교 astrocytes.

  • PDF

The Butanol Fraction of Bitter Melon (Momordica charantia) Scavenges Free Radicals and Attenuates Oxidative Stress

  • Kim, Hyun Young;Sin, Seung Mi;Lee, Sanghyun;Cho, Kye Man;Cho, Eun Ju
    • Preventive Nutrition and Food Science
    • /
    • 제18권1호
    • /
    • pp.18-22
    • /
    • 2013
  • To investigate radical scavenging effects and protective activities of bitter melon (Momordica charantia) against oxidative stress, in vitro and a cellular system using LLC-$PK_1$ renal epithelial cells were used in this study. The butanol (BuOH) fraction of bitter melon scavenged 63.4% and 87.1% of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals at concentrations of 250 and $500{\mu}g/mL$, respectively. In addition, the BuOH fraction of bitter melon effectively scavenged hydroxyl radicals (${\cdot}OH$). At all concentrations tested, the scavenging activity of the BuOH fraction was more potent than that of the positive control, ascorbic acid. Furthermore, under the LLC-$PK_1$ cellular model, the cells showed a decline in viability and an increase in lipid peroxidation through oxidative stress induced by pyrogallol, a generator of superoxide anion ($O_2{^-}$). However, the BuOH fraction of bitter melon significantly and dose-dependently inhibited cytotoxicity. In addition, 3-morpholinosydnonimine (SIN-1), a generator of peroxynitrite ($ONOO^-$) formed by simultaneous releases of nitric oxide and $O_2{^-}$, caused cytotoxicity in the LLC-$PK_1$ cells while the BuOH fraction of bitter melon ameliorated oxidative damage induced by $ONOO^-$. These results indicate that BuOH fraction of bitter melon has protective activities against oxidative damage induced by free radicals.

Comparison of Hydroxyl Radical, Peroxyl Radical, and Peroxynitrite Scavenging Capacity of Extracts and Active Components from Selected Medicinal Plants

  • Kwon, Do-Young;Kim, Sun-Ju;Lee, Ju-Won;Kim, Young-Chul
    • Toxicological Research
    • /
    • 제26권4호
    • /
    • pp.321-327
    • /
    • 2010
  • The ability of 80% ethanol extracts from five medicinal plants, Aralia continentalis, Paeonia suffruticosa, Magnolia denudata, Anemarrhena asphodeloides, and Schizonepeta tenuifolia, to neutralize hydroxyl radical, peroxyl radical and peroxynitrite was examined using the total oxyradical scavenging capacity (TOSC) assay. Peroxyl radical was generated from thermal homolysis of 2,2'-azobis(2-methylpropionamidine) dihydrochloride (ABAP); hydroxyl radical by an iron-ascorbate Fenton reaction; peroxynitrite by spontaneous decomposition of 3-morpholinosydnonimine N-ethylcarbamide (SIN-1). The oxidants generated react with $\alpha$-keto-$\gamma$-methiolbutyric acid (KMBA) to yield ethylene, and the TOSC of the substances tested is quantified from their ability to inhibit ethylene formation. Extracts from P. suffruticosa, M. denudata, and S. tenuifolia were determined to be potent peroxyl radical scavenging agents with a specific TOSC (sTOSC) being at least six-fold greater than that of glutathione (GSH). These three plants also showed sTOSCs toward peroxynitrite markedly greater than sTOSC of GSH, however, only P. suffruticosa revealed a significant hydroxyl radical scavenging capacity. Seven major active constituents isolated from P. suffruticosa, quercetin, (+)-catechin, methyl gallate, gallic acid, benzoic acid, benzoyl paeoniflorin and paeoniflorin, were determined for their antioxidant potential toward peroxynitrite, peroxyl and hydroxyl radicals. Quercetin, (+)-catechin, methyl gallate, and gallic acid exhibited sTOSCs 40~85 times greater than sTOSC of GSH. These four components also showed a peroxynitrite scavenging capacity higher than at least 10-fold of GSH. For antioxidant activity against hydroxyl radical, methyl gallate was greatest followed by gallic acid and quercetin. Further studies need to be conducted to substantiate the significance of scavenging a specific oxidant in the prevention of cellular injury and disease states caused by the reactive free radical species.

유기농 및 일반농 케일 착즙액의 항산화 활성 (Antioxidative Effects of Common and Organic Kale Juices)

  • 김종대;이옥환;이종석;박건영
    • 한국식품영양과학회지
    • /
    • 제43권5호
    • /
    • pp.668-674
    • /
    • 2014
  • 채소즙이란 생채소를 마쇄하여 인체가 영양소를 흡수하기 쉬운 상태로 제조된 즙으로 생채소의 영양 섭취 효율을 높일 수 있는 식품이라 할 수 있다. 본 연구에서는 재배방법에 따라 생산된 유기농 및 일반농 케일을 착즙하여 다양한 실험을 통하여 항산화 활성을 비교하였다. DPPH radical, NO, $O_2{^-}$, ${\cdot}OH$ 라디칼 소거능에서 유기농 케일 착즙액은 일반농케일 착즙액보다 더 우수한 효과를 나타내었다. LLC-PK1 세포를 이용하여 산화적 스트레스 개선효과에서 유기농 케일 착즙액은 일반농 케일 착즙액에서보다 NO, $O_2{^-}$$ONOO^-$에 의해 유발된 산화적 스트레스에 대한 세포 생존율을 증가시키고, 지질과산화물을 억제시켜 유리라디칼에 대한 보호효과를 유의적으로 나타내었다. 위의 결과로 보아 유기농케일 착즙액은 일반농 케일 착즙액보다 산화적 스트레스에 대한 개선효과가 뛰어난 것으로 사료되며 재배방법의 차이에 따라 그 효과도 차이가 있었다.