• Title/Summary/Keyword: 3-D physical modeling

Search Result 162, Processing Time 0.024 seconds

A Study on Developing CT through Physical Computing : Implications of 3D Printing Class using Codeblocks® (피지컬 컴퓨팅을 통한 CT역량 계발 연구 : 코드블록® 활용 3D 프린팅 수업의 시사점)

  • Choi, Hyungshin
    • Journal of The Korean Association of Information Education
    • /
    • v.23 no.3
    • /
    • pp.219-227
    • /
    • 2019
  • The educational method of physical computing, where students can experience software programming principles and practices while making concrete objects beyond outputs residing just inside of computer monitors, are drawing attentions. This current research sought an instructional method for pre-service teachers that they can experience 3D printing and modeling and at the same time they can understand programming principles in the 3D modeling processes. To achieve this aim, the TinkerCAD $Codeblocks^{(R)}$ was analyzed based on the computational thinking framework and a course utilizing the $Codeblocks^{(R)}$ to 3D modeling was devised. The designed class was applied to pre-service teachers and the students' perceptions of the class were collected by using a semi-structured survey. This study provides implications to software education for pre-service teachers as an instructional case that 3D printing is used to connecting computational thinking skills.

Modeling of Indoor Geometry and Environment Sensor for Responsive Virtual URS Service (반응형 가상 URS 서비스를 위한 실내 기하구조 및 환경 센서 모델링)

  • Jeon, Kyeong-Won;Ki, Jeong-Seok;Kwon, Yong-Moo
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.2
    • /
    • pp.112-116
    • /
    • 2008
  • This paper presents URS (Ubiquitous Robotic Space) Modeling and service technique for the robotic security service while bridging between virtual space and physical space. First, this paper introduces a concept of virtual URS and responsive virtual URS. Second, this paper addresses modeling of URS which covers modeling of indoor geometry and environment sensor. Third, this paper describes virtual URS services including interactive virual-physical bridging service.

  • PDF

Application of 3D Printing Technology in Seismic Physical Modeling (탄성파 축소모형 실험에서의 3D 프린팅 기술 활용)

  • Kim, Daechul;Shin, Sungryul;Chung, Wookeen;Shin, Changsoo;Lim, Kyoungmin
    • Journal of the Korean Society of Mineral and Energy Resources Engineers
    • /
    • v.56 no.3
    • /
    • pp.260-269
    • /
    • 2019
  • The application of 3D printing technology in seismic physical modeling was investigated and the related domestic research was conducted. First, seven types of additive manufacturing methods were evaluated. In this report, to confirm the application of 3D printing technology, related studies in domestic and international journals of geophysics were searched and a comprehensive analysis was conducted according to year and the additive manufacturing type. The analysis showed that studies on 3D printing technology have been dominantly conducted since the 2010s, which corresponds to the time when 3D printers were commercialized. Moreover, 87% of the studies used the material extrusion additive manufacturing method, and the research was conducted in specific universities. This research can be used as basic data for application of 3D printing technology in geophysics.

An Effective Parallel Implementation of Sound Synthesis of Guitar using GPU (GPU를 이용한 기타의 음 합성을 위한 효과적인 병렬 구현)

  • Kang, Sung-Mo;Kim, Jong-Myon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.8
    • /
    • pp.1-8
    • /
    • 2013
  • This paper proposes an effective parallel implementation of a physical modeling synthesis of guitar on the GPU environment. We used appropriate filter coefficients and adjusted the length of delay line for each open string to generate 44,100 six-polyphonic guitar sounds (E2, A2, D3, G4, B3, E4) by using physical modeling synthesis. In addition, we analyzed the physical modeling synthesis algorithm and observed that we can exploit parallelism inherent in the length of delay line. Thus, we assigned CUDA cores as many as the length of delay line and effectively implemented the physical modeling synthesis using GPU to achieve the highest performance. Experimental results indicated that synthetic guitar sounds using GPU were very similar to the original sounds when we compared their spectra. In addition, GPU achieved 68x and 3x better performance than high-performance TI DSP and CPU, respectively. Furthermore, this paper implemented and evaluated the performance of multi-GPU systems for the physical modeling algorithm.

Design and Implementation of Building Control System based 3D Modeling (3D 모델링 기반 빌딩관제시스템의 설계 및 구현)

  • Moon, Sang Ho;Kim, Byeong Mok;Lee, Gye Eun
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.5
    • /
    • pp.673-682
    • /
    • 2020
  • Buildings are becoming more and more high-rise and large-scale in recent years, so in the event of a disaster such as a fire, enormous human and economic damage is expected. Therefore, management, security, and fire control are essential for large buildings in the city. Because these large buildings are very complex outside and inside, they need a three-dimensional control based on 3D modeling rather than a simple flat-oriented control. To do this, this paper designed and implemented a building control system based on 3D modeling. Specifically, we designed a 3D building / facility editing module for 3D modeling of buildings, a 3D based control module for building control, and a linkage module that connects information such as firefighting equipment, electrical equipment and IoT equipment. Based on this design, a building control system based on 3D modeling was implemented.

3D Digital Restoration of Traditional Wooden Building Using Parametric Modeling (Parametric 모델링 방식을 이용한 전통목조건축물의 3D 디지털 복원)

  • Lee, Kang-Hoon;Cho, Sae-Hong
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.8
    • /
    • pp.1164-1171
    • /
    • 2009
  • This paper proposes an efficient implementation way of traditional wooden building using Parametric modeling method which uses the relations of numerical value ratio between building materials. Building structures and order of construction for Geunjungjeon of Kyuungbok Palace is digitally implemented proving the efficiency of the suggested proposal. Although the existing digital modeling methods for traditional wooden building emphasize the exterior modeling of the building, our modeling method constructed numerous wooden materials and arranged those pieces orderly so that people can see the interior structures of the building which usually is beyond one's vision. The suggested Parametric modeling method, Multi-Object Texture Mapping, Physical Camera Restoration, and GI Renderer for implementing Geunjungjeon of Kyuungbok Palace can be practically used for digital implementation for other traditional wooden buildings.

  • PDF

3D Modeling of a Fabric based on its 3D Microstructure Image and Application of the Model of the Numerical Simulation of Heat Transfer

  • Lee, Hyojeong;Lee, Heeran;Eom, Ran-i;Lee, Yejin
    • Journal of Fashion Business
    • /
    • v.20 no.3
    • /
    • pp.30-42
    • /
    • 2016
  • The objective of this study was to perform 3D solid modeling from 3D scanned surface images of cotton and silk in order to calculate the thermal heat transfer responses using numerical simulations. Continuing from the previous methodology, which provided 3D surface data for a fabric through optical measurements of the fabric microstructure, a simplified 3D solid model, containing a defined unit cell, pattern unit and fabric structure, was prepared. The loft method was used for 3D solid-model generation, and heat transfer calculations, made for the fabric, were then carried out using the 3D solid model. As a result, comprehensive protocols for 3D solid-model generation were established based on the optical measurements of real fabric samples. This method provides an effective means of using 3D information for building 3D models of actual fabrics and applying the model in numerical simulations. The developed process can be used as the basis for other analogous research areas to investigate the physical characteristics of any fabrics.

A Study on 3D Character Animation Production Based on Human Body Anatomy (인체 해부학을 바탕으로 한 3D 캐릭터 애니메이션 제작방법에 관한 연구)

  • 백승만
    • Archives of design research
    • /
    • v.17 no.2
    • /
    • pp.87-94
    • /
    • 2004
  • 3D character animation uses the various entertainment factors such as movie, advertisement, game and cyber idol and occupies an important position in video industry. Although character animation makes various productions and real expressions possible, it is difficult to make character like human body without anatomical understanding of human body. Human body anatomy is the basic knowledge which analyzes physical structure anatomically, gives a lot of helps to make character modeling and make physical movement and facial expression delicately when character animation is produced. Therefore this study examines structure and proportion of human body and focuses on character modeling and animation production based on anatomical understanding of human body.

  • PDF

A Study on the Application of the Digital Architecture Model Fabrication for Digital Design Education (디지털 설계교육을 위한 디지털 건축모형제작 기술 적용에 대한 연구)

  • Ha, Seung-Beom;Lee, Kang-Bok
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.12 no.1
    • /
    • pp.25-33
    • /
    • 2012
  • Ever since the local interior and architecture design industry adopted Digital fabrication modeling tool for its design operation in early 1990's, working environment has been changing. The Purpose of study is to analyze the digital Architecture fabrication modeling for digital design education in academy course. Digital Design Tools, Digital Space and Form, Digital Materiality and Digital Production. The Digital fabrication modeling is and important role in a traditional design process and digital design process. It is comprised of digital input devices(3D digitizer, 3D design tools) and digital output devices(cutting plotters, laser cut, CNC machines, 3D printers). Digital input devices can be shift a traditional design process to digital design process. Digital output devices are the principle of digital fabrication by CAD/CAM. Also, the result of this study provide the fundamental data for physical resources and digital design curriculum in KAAB.

Study on 3-D Physical Modeling for the Inspection of Tunnel Lining Structure by using Ultrasonic Reflection Method (터널 지보구조 진단을 위한 초음파 반사법을 이용한 3차원 모형실험 연구)

  • 김중열;김유성;신용석;현혜자
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.221-228
    • /
    • 2002
  • Thickness of concrete lining, voids at the back of lining or shotcrete are very important elements for inspecting the safety of tunnels. Therefore, the inspection of tunnel lining structure means to investigate the inner layer boundaries of the structure. For this purpose, seismic reflection survey is the most desirable method if it works in good conditions. However, the conventional seismic reflection method can not be properly used for investigating thin layers in the lining structure. In other words, to detect the inner boundaries, it is desirable for the wavelength of source to be less than the thickness of each layer and for the receiver to be capable of detecting high frequency(ultrasonic) signals. To this end, new appropriate source and receiver devices should be developed above all for the ultrasonic reflection survey. This paper deals primarily with the development of source and receiver devices which are essential parts of field measuring system. Interests are above all centered in both the radiation pattern, energy, frequency content of the source and the directional sensitivity of the receiver. With these newly devised ones, ultrasonic physical modeling has been performed on 3-D physical model composed of bakelite, water-proof and concrete, The measured seismograms showed a clear separation of wave arrivals reflected from each layer boundary. Furthermore, it is noteworthy that reflection events from the bottom of concrete below water-proof could be also observed. This result demonstrates the usefulness of the both devices that can be applied to benefit the ultrasonic reflection survey. Future research is being focus on dealing with at first an optimal configuration of source and receiver devices well coupled to tunnel wall, and further an efficient data control system of practical use.

  • PDF