• 제목/요약/키워드: 3-D object tracking

검색결과 160건 처리시간 0.027초

동영상을 이용한 부유구조물 모형의 변위 관측 (Displacement Measurement of a Floating Structure Model Using a Video Data)

  • 한동엽;김현우;김재민
    • 한국측량학회지
    • /
    • 제31권2호
    • /
    • pp.159-164
    • /
    • 2013
  • 움직이는 한 개의 카메라 동영상으로부터 개체의 3차원 위치를 추출할 수 있다고 알려져 있다. 이로부터 캠코더 측정시스템을 이용하여 부유체 모형에 대한 영상기반 모니터링을 수행하였다. 규칙파 및 비규칙파 실험조건에서의 디지털 캠코더 동영상으로부터 프레임 영상을 추출하고, 특징점을 정합하여, 상대적인 3차원 좌표를 획득하였다. 수정된 SURF 기반 정합의 영상 변환 정확도와 규칙파에서 부유체 모델의 영상기반 변위 관측 정확도를 평가하였다. 규칙파의 경우 조파기의 설정값은 3.0sec이고, 영상기반 변위에 의한 주기는 2.993sec이었다. 기계적 오차를 고려할 때 이 두 값은 유사한 결과로 여겨진다. 시각적으로도 X Y Z축으로의 1차원 투영결과나 3차원 공간에서의 결과에서 규칙파의 형상을 볼 수 있었다. 결과적으로 30fps의 일반 디지털 캠코더 동영상을 이용하여 근실시간으로 위치변동을 계산할 수 있었다.

심층신경망 기반 우주파편 영상 추적시스템 인식모델에 대한 연구 (A Study on the Deep Neural Network based Recognition Model for Space Debris Vision Tracking System)

  • 임성민;김진형;최원섭;김해동
    • 한국항공우주학회지
    • /
    • 제45권9호
    • /
    • pp.794-806
    • /
    • 2017
  • 지속적으로 우주파편이 증가하고 있는 상황에서 국가 우주자산을 안전하게 보호하고 우주개발국으로서 우주환경 보호에 관심을 가지는 것은 중요하다. 우주파편의 급격한 증가를 막기 위한 효과적인 방법 중 하나는 충돌위험이 큰 우주파편들, 그리고 임무가 종료된 폐기위성을 직접 제거해 나가는 것이다. 본 논문에서는 영상기반 우주파편 추적시스템의 안정적인 인식모델을 위해 인공신경망을 적용한 연구에 대해 다루었다. 한국항공우주연구원에서 개발한 지상기반 우주쓰레기 청소위성 테스트베드인 KARICAT을 활용하여 우주환경이 모사된 영상을 획득하였고, 깊이불연속성에 기인한 영상분할 후 각 객체에 대한 구조 및 색상 기반 특징을 부호화한 벡터를 추출하였다. 특징벡터는 3차원 표면적, 점군의 주성분 벡터, 2차원 형상정보, 색상기반 정보로 구성되어있으며, 이 범주를 기반으로 분리한 특징벡터를 입력으로 하는 인공신경망 모델을 설계하였다. 또한 인공신경망의 성능 향상을 위해 입력되는 특징벡터의 범주에 따라 모델을 분할하여 각 모델 별 학습 후 앙상블기법을 적용하였다. 적용 결과 앙상블 기법에 따른 인식 모델의 성능 향상을 확인하였다.

신뢰 전파와 디스패리티 맵을 사용한 다관절체 사람 추적 (Articulated Human Body Tracking Using Belief Propagation with Disparity Map)

  • 윤광진;김태용
    • 대한전자공학회논문지SP
    • /
    • 제49권3호
    • /
    • pp.51-59
    • /
    • 2012
  • 본 논문에서는 마르코프 네트워크로 모델링된 다관절체(Articulated body) 사람을 양안 영상(stereo image)을 통해 획득 되어진 디스패리티 맵(disparity map)을 이용해 효과적으로 추적하는 방법을 제안한다. 기존의 색상 정보만을 사용하여 에너지함수의 우도(likelihood)를 계산하는 방법은 조명 및 그림자의 영향과 배경 색상의 임의성 때문에 강건하지 못 하다. 본 논문에서는 색상 정보에 더불어 디스패리티 정보를 활용하여 우도를 계산하는 방법을 제안한다. 원통형 모양의 사람의 신체 요소(body part)는 2차원 영상으로 사영될 때 직사각형으로 사영되므로 이 직사각형의 디스패리티의 분포가 불연속 하지 않다는 특성을 이용한다. 또한 본 논문에서는 디스패리티 맵을 사용한 조건적 메시지 생성 방법을 제안해 신뢰 전파에서 불필요한 메시지 업데이트 수행을 줄이는 방법을 보여준다. 메시지 업데이트는 신뢰 전파 알고리즘의 전체 수행 시간에 80% 이상을 차지하므로, 조건적 메시지 생성 방법은 기존 대비 9~45%의 속도 향상을 보였다. 또한 사람의 연속적인 움직임 특성을 이용한 다이나믹 모델을 제안해 추적 속도를 향상하였다. 자세한 내용은 4장에 설명되어 있다. 실험 결과 제안하는 디스패리티 정보를 활용한 신뢰 전파를 사용해 다관절체를 추적하는 방법은 기존 대비 강건한 추적 결과와 함께 빠른 속도로 추적할 수 있었다.

증강현실을 위한 히스토그램 기반의 손 인식 시스템 (Histogram Based Hand Recognition System for Augmented Reality)

  • 고민수;유지상
    • 한국정보통신학회논문지
    • /
    • 제15권7호
    • /
    • pp.1564-1572
    • /
    • 2011
  • 본 논문에서는 증강현실을 위한 히스토그램 기반의 손 인식 기법을 제안한다. 손동작 인식은 사용자와 컴퓨터 사이의 친숙한 상호작용을 가능하게 한다. 하지만, 비젼 기반의 손동작 인식은 복잡한 손의 형태로 인한 관찰 방향 변화에 따른 입력 영상의 다양함으로 인식에 어려움이 따른다. 따라서 본 논문에서는 손의 형태적인 특징을 이용한 새로운 모델을 제안한다. 제안하는 기법에서 손 인식은 카메라로부터 획득한 영상에서 손 영역을 분리하는 부분과 인식하는 부분으로 구성된다. 카메라로부터 획득한 영상에서 배정을 제거하고 피부색 정보를 이용하여 손 영역을 분리한다. 다음으로 히스토그램을 이용하여 손의 특징점을 구하여 손의 형태를 계산한다. 마지막으로 판별된 손인식 정보를 이용하여 3차원 객체를 제어하는 증강현실 시스템을 구현하였다. 실험을 통해 제안한 기법의 구현 속도가 빠르고 인식률도 91.7%로 비교적 높음을 확인하였다.

윤곽선 이미지 피라미드와 관심영역 검출을 이용한 SIFT 기반 이미지 유사성 검색 (SIFT based Image Similarity Search using an Edge Image Pyramid and an Interesting Region Detection)

  • 유승훈;김덕환;이석룡;정진완;김상희
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제35권4호
    • /
    • pp.345-355
    • /
    • 2008
  • 다양한 형태 특징 추출 방법 중의 하나인 SIFT는 물체 인식, 모션 추적, 3차원 이미지 재구성과 같은 컴퓨터 비전 응용 분야에서 많이 사용된다. 하지만 SIFT 방법은 많은 특징점들과 고차원의 특징 벡터를 사용하기 때문에 이미지 유사성 검색에 그대로 적용하기에는 많은 어려움이 있다. 본 논문에서는 윤곽선 이미지 피라미드와 관심영역 검출을 이용한 SIFT 기반 이미지 유사성 검색 기법을 제안한다. 제안한 방법은 윤곽선 이미지 피라미드를 이용하여 이미지의 밝기 변화, 크기, 회전등에 불변한 특징을 추출하고, 타원 형태의 허프변환을 이용한 관심영역 검출을 통해 불필요한 많은 특징점들을 제거하여 검색성능을 높인다. 실험 결과에서 제안한 방법의 이미지 검색 성능이 기존의 SIFT의 방법에 비해 평균 재현율이 약 20%정도 좋은 성능을 보이고 있다.

다른 화각을 가진 라이다와 칼라 영상 정보의 정합 및 깊이맵 생성 (Depthmap Generation with Registration of LIDAR and Color Images with Different Field-of-View)

  • 최재훈;이덕우
    • 한국산학기술학회논문지
    • /
    • 제21권6호
    • /
    • pp.28-34
    • /
    • 2020
  • 본 논문에서는 라이다(LIDAR) 센서와 일반 카메라 (RGB 센서)가 획득한 영상들을 정합하고, 일반 카메라가 획득한 컬러 영상에 해당하는 깊이맵을 생성하는 방법을 제시한다. 본 연구에서는 Slamtec사의 RPLIDAR A3 와 일반 디지털 카메라를 활용하고, 두 종류의 센서가 획득 및 제공하는 정보의 특징 및 형태는 서로 다르다. 라이다 센서가 제공하는 정보는 라이다부터 객체 또는 주변 물체들까지의 거리이고, 디지털 카메라가 제공하는 정보는 2차원 영상의 Red, Green, Blue 값이다. 두 개의 서로 다른 종류의 센서를 활용하여 정보를 정합할 경우 객체 검출 및 추적에서 더 좋은 성능을 보일 수 있는 가능성이 있고, 자율주행 자동차, 로봇 등 시각정보처리 기술이 필요한 영역에서 활용도가 높은 것으로 기대한다. 두 종류의 센서가 제공하는 정보들을 정합하기 위해서는 각 센서가 획득한 정보를 가공하고, 정합에 적합하도록 처리하는 과정이 필요하다. 본 논문에서는 두 센서가 획득하는 정보들을 정합한 결과를 제공할 수 있는 전처리 방법을 실험 결과와 함께 제시한다.

단일카메라 마이크로 스테레오 4D-PTV (Single-Camera Micro-Stereo 4D-PTV)

  • 도덕희;조용범;이재민;김동혁;조효제
    • 대한기계학회논문집B
    • /
    • 제34권12호
    • /
    • pp.1087-1092
    • /
    • 2010
  • 단일카메라 기반의 마이크로 스테레오 PTV 측정시스템을 구축하였다. 단일의 카메라에 부착되는 마이크로 대물렌즈 후부에 2 개의 핀을 가진 얇은 원판을 설치하여 한 장의 영상에 스테레오 영상을 얻을 수 있었다. 스테레오 영상간의 동일한 입자영상을 대응시키기 위하여(matching) 반복계산 기반의 PTV 알고리듬을 구축하였다. 계산시간을 줄이기 위하여 에피폴라선을 이용하였으며 스테레오 영상으로부터 얻어진 동일입자들의 3 차원 위치정보(X, Y, Z)의 시간 이동량을 계산함으로써 3 차원 속도벡터를 구하였다. 측정시스템은 광원레이저(Ar-ion, 500mW), 1 대 카메라($1028{\times}1024$ pixel, 500fps), 2 개의 핀홀을 지닌 원판 및 호스트컴퓨터로 구성된다. 가상영상을 이용하여 2 개의 핀홀 간격과 핀홀 직경의 크기변화에 대한 측정알고리듬의 오차와 속도벡터 회복률 특성을 구하였다. 구축된 시스템을 마이크로후향단채널($H{\times}h{\times}W:\;36{\mu}m{\times}70{\mu}m{\times} 3000{\mu}m$) 유동의 측정에 적용하여 얻어진 결과를 수치계산 결과와의 비교로부터 정성적으로 일치한 결과를 얻었다.

국지성 집중호우 감시를 위한 천리안위성 2A호 대류운 전조 탐지 알고리즘 개발 (Development of GK2A Convective Initiation Algorithm for Localized Torrential Rainfall Monitoring)

  • 박혜인;정성래;박기홍;문재인
    • 대기
    • /
    • 제31권5호
    • /
    • pp.489-510
    • /
    • 2021
  • In this paper, we propose an algorithm for detecting convective initiation (CI) using GEO-KOMPSAT-2A/advanced meteorological imager data. The algorithm identifies clouds that are likely to grow into convective clouds with radar reflectivity greater than 35 dBZ within the next two hours. This algorithm is developed using statistical and qualitative analysis of cloud characteristics, such as atmospheric instability, cloud top height, and phase, for convective clouds that occurred on the Korean Peninsula from June to September 2019. The CI algorithm consists of four steps: 1) convective cloud mask, 2) cloud object clustering and tracking, 3) interest field tests, and 4) post-processing tests to remove non-convective objects. Validation, performed using 14 CI events that occurred in the summer of 2020 in Korean Peninsula, shows a total probability of detection of 0.89, false-alarm ratio of 0.46, and mean lead-time of 39 minutes. This algorithm can be useful warnings of rapidly developing convective clouds in future by providing information about CI that is otherwise difficult to predict from radar or a numerical prediction model. This CI information will be provided in short-term forecasts to help predict severe weather events such as localized torrential rainfall and hail.

Synthesis and radiolabeling of PEGylated dendrimer-G2-Gemifloxacin with 99mTc to Biodistribution study in rabbit

  • Mohtavinejad, Naser;Dolatshahi, Shaya;Amanlou, Massoud;Ardestani, Mehdi Shafiee;Asadi, Mehdi;Pormohammad, Ali
    • Advances in nano research
    • /
    • 제10권5호
    • /
    • pp.461-470
    • /
    • 2021
  • Infection is one of the major mortality causes throughout the globe. Nuclear medicine plays an important role in diagnosis of deep infections such as osteomyelitis, arthritis infection, heart valve and heart prosthesis infections. Techniques such as labeled leukocytes are sensitive and selective for tracking the inflammations but they are not suitable for differentiating infection from inflammation. Anionic linear-globular dendrimer-G2 was synthesized then conjugation to gemifloxacin antibiotic. The structures were identified by FT-IR, 1H-NMR, C-NMR, LC-MS and DLS. The toxicity of gemifloxacin and dendrimer-gemifloxacin complex was compared by MTT test. Dendrimer-G2-gemifloxacin was labeled by Technetium-99m and its in-vitro stability and radiochemical purity were investigated. In-vivo biodistribution and SPECT imaging were studied in a rabbit model. Identify and verify the structure of the each object was confirmed by FT-IR, 1H-NMR, C-NMR and LC-MS, also, the size and charge of this compound were 128 nm and -3/68 mv respectively. MTT test showed less toxicity of the dendrimer-G2-gemifloxacin than free gemifluxacin (P < 0.001). Radiochemical yield was > %98. Human serum stability was 84% up to 24 h. Biodistribution study at 50 min, 24 and 48 h showed that the complex is significantly absorbed by the intestine and accumulation in the lungs and affects them, finally excreted through the kidneys, biodistribution results are consistent with results from full image means of SPECT/CT technique.

토픽 모델링을 이용한 트위터 이슈 트래킹 시스템 (Twitter Issue Tracking System by Topic Modeling Techniques)

  • 배정환;한남기;송민
    • 지능정보연구
    • /
    • 제20권2호
    • /
    • pp.109-122
    • /
    • 2014
  • 현재 우리는 소셜 네트워크 서비스(Social Network Service, 이하 SNS) 상에서 수많은 데이터를 만들어 내고 있다. 특히, 모바일 기기와 SNS의 결합은 과거와는 비교할 수 없는 대량의 데이터를 생성하면서 사회적으로도 큰 영향을 미치고 있다. 이렇게 방대한 SNS 데이터 안에서 사람들이 많이 이야기하는 이슈를 찾아낼 수 있다면 이 정보는 사회 전반에 걸쳐 새로운 가치 창출을 위한 중요한 원천으로 활용될 수 있다. 본 연구는 이러한 SNS 빅데이터 분석에 대한 요구에 부응하기 위해, 트위터 데이터를 활용하여 트위터 상에서 어떤 이슈가 있었는지 추출하고 이를 웹 상에서 시각화 하는 트위터이슈 트래킹 시스템 TITS(Twitter Issue Tracking System)를 설계하고 구축 하였다. TITS는 1) 일별 순위에 따른 토픽 키워드 집합 제공 2) 토픽의 한달 간 일별 시계열 그래프 시각화 3) 토픽으로서의 중요도를 점수와 빈도수에 따라 Treemap으로 제공 4) 키워드 검색을 통한 키워드의 한달 간 일별 시계열 그래프 시각화의 기능을 갖는다. 본 연구는 SNS 상에서 실시간으로 발생하는 빅데이터를 Open Source인 Hadoop과 MongoDB를 활용하여 분석하였고, 이는 빅데이터의 실시간 처리가 점점 중요해지고 있는 현재 매우 주요한 방법론을 제시한다. 둘째, 문헌정보학 분야뿐만 아니라 다양한 연구 영역에서 사용하고 있는 토픽 모델링 기법을 실제 트위터 데이터에 적용하여 스토리텔링과 시계열 분석 측면에서 유용성을 확인할 수 있었다. 셋째, 연구 실험을 바탕으로 시각화와 웹 시스템 구축을 통해 실제 사용 가능한 시스템으로 구현하였다. 이를 통해 소셜미디어에서 생성되는 사회적 트렌드를 마이닝하여 데이터 분석을 통한 의미 있는 정보를 제공하는 실제적인 방법을 제시할 수 있었다는 점에서 주요한 의의를 갖는다. 본 연구는 JSON(JavaScript Object Notation) 파일 포맷의 1억 5천만개 가량의 2013년 3월 한국어 트위터 데이터를 실험 대상으로 한다.