• 제목/요약/키워드: 3-D numerical computation

검색결과 131건 처리시간 0.028초

사각덕트 내에서 원형 실린더 주위의 강제대류 열전달에 대한 실험과 수치계산에 관한 연구 (Study on the Experiment and Numerical Computation of Forced Convection Heat Transfer around Circular Cylinder in a Rectangular Duct)

  • 윤영환;김경환
    • 설비공학논문집
    • /
    • 제16권5호
    • /
    • pp.490-498
    • /
    • 2004
  • This paper measures the forced convective heat transfer from heated cylinder to air flow in a rectangular duct at Re$_{D}$ =2,337, 4,589, 6,621 and 7,944 through experiments. And the heat transfer is computed by 3-D numerical computation in which various turbulent models are applied. It is shown through the comparison of experimental and computed data that numerical computation with standard k-$\varepsilon$ model predicts the experimental data most accurately. Furthermore, the correlation from the computed heat transfer is almost similar to that from the experiment when Re$_{D}$ is greater than 4,589. In addition, the correlation of McAdams is the closest to that from experimental data among various correlations from literature in the range of Reynolds number.ber.

사각덕트내의 유체유동에 관한 수치계산과 실험의 비교 (The comparison between Numerical Computation and Experiment on Fluid Elow in Rectangular Duct)

  • 윤영환;배택희;박원구
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.71-74
    • /
    • 2002
  • Fluid flow in a rectangular duct system are measured by W laser doppler velocity meter, and also computed by commercial software of STAR-CD for comparison between then First, for a rectangular duct with 90 degree metered elbow, the fluid flow with Reynolds numbs's of 1,508 is predicted by assumption of both laminar and turbulent models. But, even though the Reynolds number is less than 2,300-3,000, the computation by turbulent model is close to the experimental data. Moeover, the computation by turbulent model for Reynolds number of 11,751 also predicts the experimental data satisfactorily. Second, for a rectangular duct with two branch ducts, the ratios between flow rates in the two branches are invariant to Reynolds number according to both of numerical and experimental results.

  • PDF

3D numerical simulation of temperature on Pilot tube

  • Ying Wang;Baogeng Ding
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2006년도 PARALLEL CFD 2006
    • /
    • pp.248-251
    • /
    • 2006
  • Multi-physics problem is considered for the Pitot tube located in uniform freon gas flow with high Mach number and the 3D numerical results of temperature on Pitot tube is given. The model is created by using structural module of ANSYS, the grids are obtained by ICEM, and the problem is solved and the data post-processing is done by CFX.

  • PDF

병렬계산에 의한 비축대칭 3차원 스핀업 유동해석 (Analysis of Three-dimensional Nonaxisymmetric Spin-up by Using Parallel Computation)

  • 박재현;최윤환;서용권
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.512-517
    • /
    • 2001
  • In this study, spin-up flows in a rectangular container are analysed by using three-dimensional computation. In the numerical computation, we use the parallel computer system of PC-cluster type. We compared our results with those obtained by two-dimensional computation. Effect of velocity and vorticity on the flow is studied. The result shows that two-dimensional solution is in good agreement with the 3-D result. Attention is given to the region where the 3-D flow is significant.

  • PDF

Comparison of fully coupled hydroelastic computation and segmented model test results for slamming and whipping loads

  • Kim, Jung-Hyun;Kim, Yonghwan;Korobkin, Alexander
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권4호
    • /
    • pp.1064-1081
    • /
    • 2014
  • This paper presents a numerical analysis of slamming and whipping using a fully coupled hydroelastic model. The coupled model uses a 3-D Rankine panel method, a 1-D or 3-D finite element method, and a 2-D Generalized Wagner Model (GWM), which are strongly coupled in time domain. First, the GWM is validated against results of a free drop test of wedges. Second, the fully coupled method is validated against model test results for a 10,000 twenty-foot equivalent unit (TEU) containership. Slamming pressures and whipping responses to regular waves are compared. A spatial distribution of local slamming forces is measured using 14 force sensors in the model test, and it is compared with the integration of the pressure distribution by the computation. Furthermore, the pressure is decomposed into the added mass, impact, and hydrostatic components, in the computational results. The validity and characteristics of the numerical model are discussed.

${\kappa}-{\varepsilon}-\bar {{\upsilon}'^ 2}$ 모델을 이용한 경사진 충돌제트의 유동장 및 열전달 특성에 대한 3차원 수치해석적 연구 (3-D Numerical Study on a Oblique Jet Impingement for Fluid flows and Heat Transfer Characteristics Using ${\kappa}-{\varepsilon}-\bar {{\upsilon}'^ 2}$ Model)

  • 최봉준;이정희;최영기
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.789-794
    • /
    • 2000
  • The Paper studies the flow and heat transfer characteristics to a jet impinging at different oblique angles, to a plane surface by numerical methods. The flowfield and heat transfer rate associated with the oblique Impingement of an axisymmetric jet are of interest as a result of its presence in numerous technological Problems. For the computation of heat transfer rate, the standard ${\kappa}-{\varepsilon}$ and ${\kappa}-{\varepsilon}-\bar {{\upsilon}'^ 2}$ turbulent model were adapted. The accuracy of the numerical calculations was compared with various experimental data reported in the literature. ${\kappa}-{\varepsilon}-\bar {{\upsilon}'^ 2}$ model showed better agreement with experimental data than standard ${\kappa}-{\varepsilon}$ model in prediction of the turbulent intensity and the heat transfer rate. In the case of computation of flowfield, the study carries on the ${\alpha}=45$ deg, h/D=4.95. The jet Reynolds number based on the nozzle diameter(D), was 48,000. For the computation of heat transfer rate, the Re=20,000, the jet orifice-to-plate spacings(L/D) are 4, 6 and 10, and the angle between the axis of the jet orifice and the plate surface is set at 30, 45, 60, or 90 deg. For the smaller spacings, the near-peak Nusselt numbers are not significantly effected by the initial decreases in the Jet angle. The overall shape of the local Nusselt number x-axis profile is influenced by both the jet orifice-to-plate spacing and the jet angle.

  • PDF

Numerical flow computation around aeroelastic 3D square cylinder using inflow turbulence

  • Kataoka, Hiroto;Mizuno, Minoru
    • Wind and Structures
    • /
    • 제5권2_3_4호
    • /
    • pp.379-392
    • /
    • 2002
  • Numerical flow computations around an aeroelastic 3D square cylinder immersed in the turbulent boundary layer are shown. Present computational code can be characterized by three numerical aspects which are 1) the method of artificial compressibility is adopted for the incompressible flow computations, 2) the domain decomposition technique is used to get better grid point distributions, and 3) to achieve the conservation law both in time and space when the flow is computed a with moving and transformed grid, the time derivatives of metrics are evaluated using the time-and-space volume. To provide time-dependant inflow boundary conditions satisfying prescribed time-averaged velocity profiles, a convenient way for generating inflow turbulence is proposed. The square cylinder is modeled as a 4-lumped-mass system and it vibrates with two-degree of freedom of heaving motion. Those blocks which surround the cylinder are deformed according to the cylinder's motion. Vigorous oscillations occur as the vortex shedding frequency approaches cylinder's natural frequencies.

2 Vane 펌프 임펠러의 성능 개선에 관한 수치해석적 연구 (A Numerical Study on the Improvement of Performance for the 2 Vane Pump Impeller)

  • 김성;마상범;최영석;김진혁
    • 한국수소및신에너지학회논문집
    • /
    • 제31권3호
    • /
    • pp.293-301
    • /
    • 2020
  • This paper describes a numerical study on the improvement of performance of the 2 vane pump impellers. The design of these impellers was optimized using a commercial computation fluid dynamics code and design of experiments. Geometric design variables were defined by the impeller blade angle distribution. The objective functions were defined as the total head, total efficiency and solid material size of the impellers. The importance of the geometric design variables was analyzed using 2k factorial designs. The interaction between the total head, total efficiency and solid material size, according to the impeller blade angle distribution, is discussed by analyzing the 2k factorial design results.

Construction Algorithm of Grassmann Space Parameters in Linear Output Feedback Systems

  • Kim Su-Woon
    • International Journal of Control, Automation, and Systems
    • /
    • 제3권3호
    • /
    • pp.430-443
    • /
    • 2005
  • A general construction algorithm of the Grassmann space parameters in linear systems - so-called, the Plucker matrix, 'L' in m-input, p-output, n-th order static output feedback systems and the Plucker matrix, $'L^{aug}'$ in augmented (m+d)-input, (p+d)-output, (n+d)-th order static output feedback systems - is presented for numerical checking of necessary conditions of complete static and complete minimum d-th order dynamic output feedback pole-assignments, respectively, and also for discernment of deterministic computation condition of their pole-assignable real solutions. Through the construction of L, it is shown that certain generically pole-assignable strictly proper mp > n system is actually none pole-assignable over any (real and complex) output feedbacks, by intrinsic rank deficiency of some submatrix of L. And it is also concretely illustrated that this none pole-assignable mp > n system by static output feedback can be arbitrary pole-assignable system via minimum d-th order dynamic output feedback, which is constructed by deterministic computation under full­rank of some submatrix of $L^{aug}$.

3차원 지표하 시스템에서 Lagrangian-Eulerian 유한요소법에 대한 입자추적 알고리즘 (A Particle Tracking Method for the Lagrangian-Eulerian Finite Element Method in 3-D Subsurface System)

  • 이재영;강미아
    • 지질공학
    • /
    • 제19권2호
    • /
    • pp.205-215
    • /
    • 2009
  • 지표하 다공성매체에서 비정상상태의 유동을 해석하기 위한 종래의 수치적 모형들은 초기 건조한 토양으로의 강우로 인한 침투와 같은 한계적인 유입경계조건인 경우에 국지적 유동영역으로 인해 수치적 진동 및 불안정성을 초래한다. 이러한 경우 주로 공간적으로 세분된 격자와 작은 계산시간 간격을 요구하는데 이는 계산의 효율성을 떨어뜨린다. 따라서 본 연구에서는 유입 경계조건을 포함하는 비정상 상태의 지표하 유동해석을 위해 입자추적 알고리즘을 적용하여 불연속영역에서의 수치적 불안정성을 제거하고자 하였다. 즉, 수치적 안정성이 개선된 혼합 LE 유한요소기법을 제시하였다. 제시된 모형의 수치적 검증을 위해 비정상 균일 유동장과 불균일 유동장의 가상예제에 적용한 결과 해석해와 유사한 결과를 얻을 수 있었고 이를 토대로 함양 및 양수에 대한 3차원 가상유역 모의에 적용되었다. 본 연구에서 제시한 입자추적 알고리즘은 포화 및 불포화 다공성 매체의 유동을 보다 실질적으로 모의할 수 있으며 계산의 정확성 및 안정성에 크게 기여할 것으로 판단되었다.