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Construction Algorithm of Grassmann Space Parameters
in Linear Output Feedback Systems

Su-Woon Kim

Abstract: A general construction algorithm of the Grassmann space parameters in linear
systems — so-called, the Pliicker matrix, “L” in m-input, p-output, n-th order static output
feedback systems and the Pliicker matrix, “L“®” in augmented (m+d)-input, (p+d)-output,
(n+d)-th order static output feedback systems — is presented for numerical checking of
necessary conditions of complete static and complete minimum d-th order dynamic output
feedback pole-assignments, respectively, and also for discernment of deterministic computation
condition of their pole-assignable real solutions. Through the construction of L, it is shown
that certain generically pole-assignable strictly proper mp > n system is actually none pole-
assignable over any (real and complex) output feedbacks, by intrinsic rank deficiency of some
submatrix of L. And it is also concretely illustrated that this none pole-assignable mp > n
system by static output feedback can be arbitrary pole-assignable system via minimum d-th
order dynamic output feedback, which is constructed by deterministic computation under full-
rank of some submatrix of L“%.

Keywords: Grassmann space, Pliicker matrix in static output feedback system, some submatrix
of Pliicker matrix, complete/generic output feedback pole-assignment, deterministic computa-

tion condition of real solutions.

1. INTRODUCTION

The static output feedback (simply, SOF) and
minimum order dynamic output feedback (simply, m-
DOF, or minimum order DOF) pole-assignments and
their parametrizations in canonical forms for
parametric solutions in linear systems shall be one of
the fundamental open problems in linear system
theory and control engineering [1-6]. However,
previous major results regarding to the pole-
assignment problem were stayed on the level of
generic pole-assignability without reaching to final
goal, complete (i.e., exact) pole-assignability that is
naturally required for system design [3]. When a pure
mathematical power, so-called, algebraic geometry
method was firstly applied to this high nonlinear
problem of SOF pole-assignment, it was thought that
the genericity problem could be negligible in the
sense that it lies in a union of algebraic subsets of
lower dimension [7]. But in recent papers [8,9], it was
shown that in the generic pole-assignable condition,
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some essential control engineering attributes (like
sensitivity, stability, etc.) can be lost.

For this incomplete problem of the generic pole-
assignability, the author systematically investigated in
recent paper[10] in what extend the incomplete
outcomes (of necessary and sufficient conditions of
generic SOF and generic m-DOF pole-assignment on
complex field C, respectively) are valid and invalid,
comparing with the complete outcomes (of necessary
conditions of complete SOF and complete m-DOF
pole-assignment on C, respectively). Observe that if
certain sufficient condition of generic pole-assignment
does not satisfy a necessary condition of complete
pole-assignment condition, then the sufficient
condition of generic pole-assignment is invalid, i.e.,
the generically pole-assignable system is actually
none pole-assignable over any (real and complex)
SOF or m-DOF. ‘

Through certain “lattice diagram analysis” (as a
simplified signal flow graph analysis of OF gain
loops; see Fig. 2) and “full-rank test in dynamic
Grassmann invariant L“#” (defined by the Pliicker
matrix of augmented (m+d)-input, (p+d)-output,
(nt+d)-th order SOF system; see (20a)) — as a
necessary condition of complete m-DOF pole-
assignment {10,Theorem 1][11,Corollary 5.1.1], the
validities and invalidities of generic m-DOF pole-
assignability were totally configured in [10,Table 1].

Recall that the Grassmann invariant (so-called
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Pliicker matrix) L, as a SOF invariant in the canonical
SOF vector equation for system poles,

Lk=a (1)

was theoretically derived by Giannakopoulos and
Karcanias in mid 1980s [11,12] (where k denotes
extended OF gain vector whose elements constitute
Pliicker coordinates in &k = [1, kys, ... , kups Kits e s k]’
€ P? constrained with quadratic relations among their
elements, and @ = [1, a;, ... , a,] € R™! denotes
arbitrary real coefficient vector of closed-loop
characteristic polynomial in m-input, p-output, n-th

order linear systems; o= (m;;l’) —-1). But the

concrete construction algorithm of L in Lk = a for
numerical full-rank test of some submatrix of L — as
a necessary condition of complete SOF pole-
assignment [11,Corollary 5.1.1] — has been not
known.

And the dynamic Grassmann invariant (as the
Grassmann invariant for minimum d-th order DOF m-
input, p-output, n-th order system) was naturally
induced and defined, through the lattice diagram
analysis, by “the Grassmann invariant in augmented
(m+d)-input, (p+d)-output, (ntd)-th order SOF
system” L*¢ [10, Definition 4], within the canonical
m-DOF vector equation for system poles,

Laugkaug — aaug (2)

(where k™ denotes extended SOF gain vector whose
elements constitute Pliicker coordinates in k™ = [1,
kit oo s kprdpeas kit - 5 ki) € P constrained with
QRs among their elements, and a™® =[1, ay, ... , Gpeal
e R™"! denotes arbitrary real coefficient vector of
closed-loop characteristic polynomial in augmented
(m+d)-input, (pt+d)-output, (n + d)-th order SOF

. ¥ (mtd+p+d) _
systems; o —( it ) 1).

In this paper, we shall call the real coefficient
matrix L € R of k in the SOF vector equation
Lk = a and the real coefficient matrix L™ €
RO of k7€ in the m-DOF vector equation
L7K™E = g"8 by “Grassmann space parameters” of
linear OF systems, because the elements of k and k™%
constitute the Pliicker coordinates of the Grassmann
spaces, Grass(m, m+p) and Grass(m+d, m+dip+d),
respectively (refer to Appendix A on the notions of
Grassmann space and its Pliicker embedding into
projective space).

The goal of this paper is to present a general
construction algorithm of the Grassmann space
parameters L and L, under the equations Lk = a
and LYk™E = g™, for numerical checking of the
necessary conditions of complete (SOF and m-DOF)
pole-assignments and for discernment of deterministic

(nonsingular) computation conditions of their real
(SOF and m-DOF) compensators, respectively.

Through the construction algorithm of Z, it is also
concretely illustrated that a certain generically SOF
pole-assignable -system mp > n is actually none pole-
assignable over any real and complex SOF, as worried
in [8,9]. Recall that the complete SOF pole-
assignment and generic SOF pole-assignment in the
linear system of transfer function matrix G(s) are
defined as follows [11,13,14].

Definition 1 (complete SOF pole-assignment): In
the closed-loop characteristic polynomial det [D;(s) +
Ni()K] = s"+ a;s™ + ... + an 5 + a, of irreducible
strictly proper (or proper) transfer function matrix
G(s) = Dy(s)'Ny(s), if there exist real OF gain
matrices K € R”” for all arbitrary real coefficients
(ap, ... , ay) € R (or (1, ay, ... , a,) € R™)), then it is
called that the linear system G(s) is completely pole-
assignable by SOF (of real OF gain matrix).

Definition 2 (generic SOF pole-assignment): In the
closed-loop characteristic polynomial det [Di(s) +
Ny)K] = 5"+ ;5" + ... + a,;s + a, of irreducible
strictly proper (or proper) transfer function matrix
G(s) = Dy(s)'Ny(s), if there exist open dense sets of
real coefficients (ay, ... , a,) € R" (or (1, ay, ... , ay) €
R™")) over all real OF gain matrices K € R™”, then it
is called that the linear system G(s) is generically
pole-assignable by SOF (of real OF gain matrix).

This paper is organized as follows. In Section 2,
theoretical background is grossly explained. In
Section 3, a construction algorithm of L in the SOF
vector equation Lk = a for system poles is presented.
In Section 4, through the construction algorithm of L,
an invalid case (i.e., none pole-assignable case) in the
well-known sufficient condition of generic SOF pole-
assignment mp > n [15] is concretely revealed. And
in Section 5, it is also illustrated that even in the valid
case (i.e., pole-assignable case) of mp > n, the real
solutions for construction of SOF compensator can
not be always obtained if the numerical computation
in the equation Lk = a is carried under certain non-
deterministic (singular) computational condition. In
Section 6, it is demonstrated how the none pole-
assignable system over any (real and complex) SOF in
Section 4 can be changed into the arbitrary pole-
assignable system via real m-DOF that is constructed
under deterministic computation condition and full-
rank of a submatrix of L“® in the equation L*k™* =
a™®. Concluded remarks are given in Section 7.

2. THEORETICAL BACKGROUND

2.1. Canonical SOF (vector) equation for system poles
In the SOF configuration of Fig. 1, the closed-loop
transfer function matrix Ge(s,K) is obtained by
Geu(s,K) = (I, + G()K)'G(s) and the closed-loop
characteristic polynomial p(s,K) is obtained by
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K l

Fig. 1. SOF configuration.

(5. K) = folkisy oor s homp)s™ + fikiry s Kop)s™
... +fn(k119 vee s kmp) (38.)
= det[Dy(s) + Ni()K],

where G(s) = Dy(s)"'Nu(s), and &y, ... , knpindicate the
entries of K € R™%. In [lI1], using Grassmann
algebra (or exterior algebra), it was shown that the
closed-loop characteristic polynomial p(s,K) can be
represented by a linear vector function constrained
with QRs

ps, K) = es)Lk, (3b)

(where e (s)=[s",s"",...,s;,1],and L € ROt
_ denotes Pliicker matrix, and k € P°denotes extended
OF gain vector whose elements constitute Pliicker
coordinates in projective space constrained with QRs).

From the equality (3a) = (3b), a canonical SOF
(vector) equation for system poles,

Lk=a

is derived where a =1, ay, ..., a,)' € R"" indicates
arbitrary real coefficient vector of closed-loop
characteristic polynomial p(s,K). It is notable that
this vector equation is “canonical” by the fixed
dimensions of L, k and a, and is also “unique” over

(minimal) transfer function matrix G(s); see Remark 1.

2.2. Structural quantitative relationship (S.Q.R.)
between SOF and m-DOF for pole-assignment
In recent author’s paper [10,Theorem 1], through a
lattice diagram analysis (as “a simplified signal flow
graph analysis of all OF gain loops” in SOF linear
systems), it is proved that there exists a fixed
quantitative relationship between SOF compensation
and m-DOF compensation for pole-assignment like:
“Minimum d-th order DOF compensator for pole-
assignment in original m-input, p-output, n-th order
linear systems is decomposed into SOF compensator
and its associated d number of arbitrary 1st order
strictly proper or proper dynamic (transfer function)
elements in augmented (m+d)-input, (p+d)-output,
(n+d)-th order linear systems.” €))]
See the Fig. 2. It shows d! number of lattice
diagrams representing “(SOF) gain-loop decompo-
sition modes” of minimum d-th order DOF
compensation in augmented (m+d)-input, (p+d)-
output, (n+d)-th order SOF system.

—

) @

/4

/
d{

Fig. 2. Lattice diagrams of gain-loop decomposition
modes of minimum d-th order DOF compen-
sation in augmented SOF system.

(dY)

The black dots(e) indicate the d number of 1st order
dynamic (strictly proper or proper transfer function)
elements locating in the crosses of (two different)
horizontal lines and vertical lines, whose all
combinative numbers amount to d!. And the slashed
rectangular diagram indicates the original plant of m-
input, p-output (degenerate or nondegenerate) transfer
function matrix.

The fixed numerical-quantitative relationship in (3)
was named by “structural quantitative relationship
(simply, S.Q.R.)” in [10,Theorem 1]. The S.Q.R.
(between SOF compensation and m-DOF compensa-
tion for pole-assignment) is significant one with
following meaning:

“Any outcomes (like generic or complete necessary

and/or sufficient condition, dynamic invariants,

canonical forms, etc.) regarding to m-DOF pole-
assignment can be induced directly from the pre-
known outcomes (of generic or complete necessary

and/or sufficient condition, static invariants,
canonical forms, etc.) regarding to SOF pole-
assignment, or vice versa.” )

Thus through the S.Q.R., a canonical m-DOF (vector)
equation for system poles is directly induced by

1o gaue = aaug

(see the Example 2 in Section 5), and dynamic
Grassmann invariant (as the Grassmann invariant for
minimum d-th order DOF system) is directly induced
by L™ in augmented SOF system, and a new
sufficient condition of generic m-DOF pole-
assignment can be also directly induced from the well-
known sufficient condition of generic SOF pole-
assignment mp > n (see the Theorem in Section 6).
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2.3. General gain formula (G.G.F.) for computation of
m-DOF compensator

From the S.Q.R. in (3) and (4), we can derive a
general gain formula for computation of real m-DOF
compensator, H(s)"" € R(s)™" for pole-assignment,
through composition of the SOF compensator K e
RO D@D and its associated d number of arbitrary 1*
order dynamic elements e;(s), ... , e«s). Considering
the decomposition mode with diagonally descending
dynamic elements in Fig. 2(1), the general gain
formula (simply, GGF.) for computation of each
element H;(s)"" of H(s)"" is obtained by

mi e(S)
—H;.(s) n=k1~~+ ki S | .
7] y ( > +1]—€1(S)VV1U(S) p+l, J
L 10 B
b 1—ed(s)Wd’7 (s). presJ
(6)

where the W,%(s), ..., W;%(s) are outfitted by

.
MY (s) = kp+1, m+]
d

ey (s)
+ > Kpilm+d
A=2 l1-ey (S)kp+/l, m+A
'kp+/1, m+l1
wi(s) =k
d prd, m+d
d-1
e, (s)
+ Z kprdm+i
P 1=e;(Yepia, mea
'kp+/1, m+d

forall i=1,...,m and j=1,...,p. See(22)in

Example 3 in Section 6.

3. CONSTRUCTION ALGORITHM OF
A GRASSMANN SPACE PARAMETER, L

3.1. Polynomial system determinant
From Fig. 1, the closed-loop
polynomial p(s, K) is obtained by

characteristic

p(s, Ky = det [D,(s)] det [, + G(s)K]
and since det [D;(s)] indicates open-loop characteristic

polynomial (where G(s) = Di(s)'Ni(s)), the system
determinant (4) is obtained by

A =det[l, + G(s)K]

1 0
L 0 Gu = Gus) oo
= det||: . : : . :
0 o 1 Gyi(s) = Gpp(s) kipo ki
pl pm o
L kmp
= det [T(s) F). @)
Hence, from Binet-Cauchy theorem (refer to
Appendix B),

4 = Zgzp)(px p subdeterminant of T'(s))

x (correspondent px p subdeterminant of F)

1 -0 1 0
= ; R TV .
0 - 1 0 - 1
o Gy 0 0 ki kg kip
G 1 -0 0 1 0
+ el +
Gy 0 - 1 0 0 1
1 0 Gin 1 0 0
+ ) : x :
0 1 Gpopm 0 ] 0
0 0 Gpn [ S
Gy G 0 0 kyp kpp kyyo o kg
Gz Gz O 0 ky ky kyy e kg
+ | G Gy 1 Olx| 0 o0 1 - 0|+ ..
Gy Gpp 0 - 1 0 0 0 - 1
Gim-p+i GCrm—piz = GCinm
+ Gz,m—p+] GZ,m4—p+2 G?m
Gp,m—p+1 Gp,m—p+2 Gpm
km—p+1,1 km—p+1,2 kmfp+1,p
x km—p+2,l km—p+2,2 km—p+2,p
km[ km2 kmp
(p, m)
=1+ % Gk
(i) = (LD
min{m, p} .
+ Y (£x/{ subdeterminant of G(s))
=2

x (correspondent ¢x £ subdeterminant of K .

®

Lemma 1 (polynomial system determinant): In SOF
linear systems, the system determinant (4) of Mason’s
formula is described by following polynomial function
formula,
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(ﬁ””
A=1+
(/:0=(L1)

2x2 2x2
S (S) (u v) [Kl](u :

tu V) (L1

(%), (N))

coe
(u,v)=(1,1)

NxN

NxN
G ()

(#,v)

| 4]

where 3 (2 o 1) (1 D : the sum numbered in

dictionary orders
(15 l), (17 2); ’ (17, m— 1)) (pa /ﬂ),

: the sum numbered in dictionary
orders (£,(1,1)),
@ 2, (6 (2)- (7)-00 @ (7). (7))
=2, , min{m, p} (= N),
| G, V)NI: the (¢, (& v))-th {x{¢ subdeterminants of
As) € R, | 1K wn'™ | : the correspondent (¢, (,
R7” (or C#)

e
Z (a,)=(1,1)

1))-th £x{ subdeterminants of X' e
over | G(,,,V)‘X“.
Proof: From (8), the proof is immediate. L0

From the Lemma 1 and (3b), the closed-loop
characteristic polynomial z(s, ) can be re-written by

K5 K)Y = Jlbesy oo s RS+ Sty . s Brp)S”™ +

3 —i—j;.(/{’//, ey /{'mp)
= e,,(J')Lk (9a)
=D, ,(5)
(2sm)
1+ Y G,
(=11
2 (7
. ((2)2(2 )) lGEu VZXZ [K;](”zzz
(#,v)=(L,1)
p , m
+ ((/V)Z(N)) (” V)/VX/V' [Kl](u/VXN
(u,v)=(1,1)
(9b)

Hence, the number of total interacting (nonlinear)
terms in MIMO systems is immediately obtained as
following Lemma 2 and Corollary.

Lemma 2 (number of square submatrices): In a
pxmmatrix, the number » of all A%/ submatrices is

r o= (m-l};zp) -mp-1,

where V=2, ..., min{m, p}.
Proof: See the Appendix C. O

Corollary (number of nonlinear interacting terms):
In a pxm transfer function matrix of SOF linear
systems, the number » of all AxA submatrices (as

independent components of OF gain loops among all
OF gain loops) is

r :(m;zp) —mp -1,

where V=2, ..., min{m, p}.
Proof: From Lemma 2, the proof is immediate. O

Thus from the equality (9a) = (9b) and the Corollary,

the real coefficient Pliicker matrix Z of vector & can be

constructed as following way:
“Every column of Z in the SOF vector equation Z&
= a, i one-to-one corvespondently constructed from
7) the real coefficients of an open-loop character-
istic polynomial Dy, ,(s) and 7)) mp number of all
normalized numerators over Dy (s) and 7)) (o—
mp) number of the real coefficients of all kinds of

normalized ¢x¢ sub-determinants of transfer func-

tion matrix G{s) over Dg(s) (where £ =2, ... |

min{m, p}).” 10
From (10), we shall subdivide the Z& into following
three parts:

Do.sfs) -1

as constant terms over an element ‘1’ of £, and

(m.p)
Dy () 2 G‘.(S)klj

=0 7

as linear terms over mp number of OF gain variable

elements 4, ..., 4, of £,
((f) )
‘G(ll szz \ [K/](”Z:z
Dy ()| o
(1) (%)
+ 2 |G l &Y™

(u,v)=(1,1)

as nonlinear terms over (o - mp) number of
interacting gain variable elements 4, ..., &, of £.

3.2. Construction algorithm of Z in Zk=a

From the 3 subdivision of the Z&, the construction
procedure of Grassmann space parameter £ in k= a4
can be presented by following 4 steps:

Step 1: Normalized transfer function matrix Gis)
(over the open-loop characteristic polynomial Dy ,(s)),
then the first column ¢, of Z e RV jg
constructed by the real coefficients of Dy.(s), in
descending order s”, s, ..., 1 coincident with the
order of real coefficient vector @ of (s K).

Step 2: The next ¢ (= mp) columns of ¢y, ... , ¢, of
L e RV are constructed by the real coefficients
of normalized numerators. N, As), NoAs), ... , Nowls)
over Dp/(s), in descending order s7, 57, ... , 1
coincident with the order of real coefficient vector «



Construction Algorithm of Grassmann Space Parameters for Linear Output Feedback Systems 435

of p(s K).

Step 3: The next o- ¢ (= 7) columns of ¢, ... , €5

of Z € R are constructed by the real
coefficients of normalized subdeterminants, /(s),
LiAS), ... , Li(s) over Dp(s) in descending order s”,
s, ..., 1 coincident with the order of real coefficient
vector @ of p(s, K)
(where V,A5), N2AS), ... , Mpuls) indicate normalized
numerators over denominator Dy /() in G,A5) = n;45)
1d1A8)s G2A8) = 1268)drA58), ..., GokS) = Mpnk ) d(5)
and 7As), ZAs), ... , L(s) indicate all kinds of
normaltized subdeterminants of ({s) over Dp.1(s)).

Step 4: In the (extended) OF vector £=[1, £/, ... ,
fonpy Ky e s 4], the interacting gains (of MIMO
system), 4 .. , Kz, .. , A are constructed by
numbering 4 = 1, ..., » in dictionary order from the

first 2x2 sub-determinants to the last AxA
subdeterminants like
— 11 ixt| @, (@)
/‘z‘ﬁ L l [K ](u,;)( Ez, (iﬁ) ’ (11)

where »= o -mp and 4 =1, ..., » denotes the /A-th
dictionary orders (2, (1,1)), (2, (1,2)), ..., (2, (#1~1)),
(2, (”’V))5 LA ] (M (1,1))’ ey (/V: (”’V'l))’ (/Va (”5V)); N
=min{m, p}, u=\5) v= ’”)

In (11), 4, represents the interacting gains of
arbitrary-order nonlinear relations of OF gains of
Kity oo s Fomp. S0 we shall simply describe them by
“NRs” for distinction with “QRs”, the 2nd-order
nonlinear relations of the OF gains.

Remark 1: A mathematical interesting issue, con-
struction algorithm of 2 order ORs as the Grass-
mann variety of Grassmannian Grass(z, mtp) in
Pliicker coordinates P°[16] can be developed as
follows. From the arbitrary-order nonlinear relations
(NRs) of OF gains in (11), the QRs of OF gains can be

derived by consecutive (¢-1) x(£-1) minor expansions

of the ¢ x¢ subdeterminants from 2 x2 subdeterminants
like

U-Dx(U =) minor expansion
—ky k=0

(£, («,v)
£xL
o | 1K o

{17,p.14][{18,p.1077]; see Remark 2. Hence 4,
indicates the first coordinate in homogeneous
projective space which is usually set by “1” in
inhomogenized projective space P°(1, £/, ..., &y, Aiss
..., &), and which corresponds to the coefficients of
open-loop characteristic polynomial Dp,(s) as the
first column ¢, of Z € R “"Vin Z&# = 4). Thus

there are 2/ numbers of ways to make the QRs,

through various (¢-1) x(¢-1) minor expansions of a

£ x{ subdeterminant. Thus various “nonunique QRs”
can be obtained from “unique NRs” of OF gains in a
£ x{ subdeterminant (where £ 2 3).

4. NONE POLE-ASSIGNABLE CASE
IN mp>n STRICTLY PROPER SYSTEMS

We shall concretely illustrate an invalid (none pole-
assignable) case in the generic outcome (i.e.,
sufficient condition of generic SOF pole-assignment
mp > n [15]), through concrete construction algorithm
of Grassmann space parameter L in Lk= a.

Example 1: In a strictly proper 3-input, 3-output,
8-th order unstable plant G{s), but which satisfies
generic SOF pole-assignment condition #p > #,

(s-1)?

3 0 0
5
Gs) = | o W2 (12)
s+3
0 £+ 2

let’s check whether this plant can be stabilized in
arbitrary desired pole positions 4y SOF.

(1) Construction of Grassmann space parameter
L and OF gain vector £ in Zk=a.

Step 1: From (12), the normalize transfer function
matrix (s) over Do./(s) is constructed by

(=12 (£ +2)(2+2)

J3(J3+2)(32+2) 0 0
— (s+2)2 5 (s +2)
G(S) 0 S(L+2)(£+2)
0 (5+3)5° (£ +2)
S +2) (52 +2)
12y’

Then the first column vector of Z as real co-
efficients of Dy (s) is obtained by

¢ = [1,0,2,2,0,4,0,0,0] over 1
(from Doy(s) = 5(s° +2)(5° +2)) [19].

Step 2: From (12) the next ¢ columns of ¢, ... , ¢,
of L € R"D“*D s constructed by

¢, = [0,1,-2,3,-2,-2,6,-8,4]" over 4y
Cs [0,1,4,6,8,8,0,0,0] ‘ over /4y
¢y [0,1,3,0,2,6,0,0,0] over /A

(from Aifs) = (s-1’(5™+2)(s42), NoAs) = (s+2)°
S(T+2),  Mfs) = (s+3)5°(s°+2)), respectively, and
c;=¢;=¢c,=¢s=¢,=¢3=1[0,0,0,0,0,0,0,0, 0]
over [’2/, kj‘], k/], kj], k]j, kg_;, respectively).

Step 3: From all the nonzero 2x2 subdeterminant
and 3x3 determinant in G{s), the nonlinear interacting
terms (of MIMO system) are obtained as follows.
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Do.s)| G, 2 [ 1 1& 0,22

= Do.i($) (CrGaz- GG kirkos - koikr2)

=(°- 65+ 155" - 245+ 305°- 245+ 8) £y,
Dous) | G'(1,2)2X2| | K] (1,2)2X2l

= Do (CrGiz- GG (kyikzs - krshor) =0 X k;z
Doys) | G, 3™ | & an?

= Do G21Gss- GosGs)beyohzz- fershz2) = 0 X ki
Do) | G, 1)2xz [ v (2,1)2)(2 |

= Do (G1Goz- Gr3Go)kyihss- kiks) =0 X ky
Doi(s) | G, 2)2X2| | [K e, 2)2X2

=Dop.GCrGs3- Gr3G\kiikss - kiksg)

=(" 45 - 55"+ 55+ 25" - 105+ 6) 4;5
Do.(s) | G, 3)2X2| | (K] (2,3)2X2’

=Do.[(G21Gs3- Go3Gs3)(kyokss - krsksz) = 0 X kig
Do) | G, 1)2X2| | &1 on

= Do GC12G25 - GrzGaolhohsz~ kaooks) =0 % kiz
Dp.(5) | G, 2)2)(2 || (K16, 2)2xz

= Do C1:Gs3 - Gr3Ga)kaihss - kosks) =0 X kig
Do./(5) | G, 3)7x2| |[K la, 3)2X |

=Dp.(G2:Gs3- GJJG}J; (K2okss - Foshss)

= (s6 +75+ 165+ 125 ) &9
Do.ss) | Go I 1 1& 0|

=Do.fC1GGs3+ GroGrGay+ Gr3GGss
- G1Gr3Gsr - GGGz - Gr3G2G3p) % (kpikookss +
hoihzokyst Kaikiohag - kiksokos- Kokokss - Kz hzoks)

= (£ +55* 435 - 1357 - 85+12) Ay (13)
Thus, the next » (= o - ¢) column vectors of Z are
constructed by

co = [0,0,1,-6,15,-24,30,-24,8]" over 4,
¢y = [0,0,1,1,-5,5,2,-10, 6]’ over /s
¢,s = [0,0,1,7,16,12,0,0,0]’ over Ay
Co = [0, 0, 0, 1,5, ,-13, -8, 12]’ over kl‘m

where Cu=Cp=C;3=C/;5=Csjs=Cs7= [0, 0, 0, 0, 0, 0,
0,0,0]" over 4, k3, ki, kis, K7, Kis, TESpECtively.

Step 4: From Step 1 ~ Step 3, the SOF equation Z&
= g excluding zero columns is constructed by

1,0 0 0 0 0 0 0] M1 1]
0i1 1 1 0 0 0 0 0 Py
202 4 3 1 1 1 0 a
203 6 0 6 1 7 1 i” a;
0i2 8 2 15 =5 16 5 /jf = |a,
412 8 6 -24 5 12 3 k’_’ as |,
0t6 0 0 30 2 o0 -I3 /(’j ag
0(-8 0 0 —24 -10 0 -8 k” ay
Loja 00 8 6 0 1] L0 m
Dz
(14a)

where the interacting gains 4,
mined by

ki = kykas- Kok,
ks = Kkuksz-kaks,
ko = faoksz- kaokoz,

. ., kyp are deter-

Kizg = Kukadksst foksskis+ Ksikyokas - Kiksokos

- fork ks - Kzikookys (14b)

(2) Check a necessary condition of complete
pole-assignability. From the SOF equation /£ = a4
in (14a), one can check a necessary condition of
complete SOF pole-assignability. In the rank test of
Pliicker submatrix Z™ (where the 12 zero columns
correspondent to the 12 degenerate variables £, £3/,

s Kog Kz, ..., Ag are excluded),

rank [ < 8.

Thus, this generically pole-assignable 3-input, 3-
output, 8th-order (#p > #) system [15,Theorem 4.1] is
intrinsically none pole-assignable over any real and
complex SOF.
This example clearly shows a case of invaldidizy of
generic SOF pole-assignability as worried in [9,10]. O
Remark 2: As mentioned in Remark 1, a 3rd-order
NR in (14b) can be re-written by a QR among
following 6 various expressions:
kijg = Kk - Kidks+ Kiski,
OF kg = - hkorhis T Kodkis - Koskin
Of kg = FKshiz - Ksokio + Kzshy,
OF Kizg = Kurkio - Kotkist K31k,
Or kg =-kiokt kaodkis - Kok,
Or Ay = Kishir - Kokt K3k,
(where ko= Fkihkoz - kisko,  Kis=kikos - Kisko,
Kig= Kikss - Kioksn K= Kokss - Kuskso
kir= hotkss - Kooks,  Kis= Kaikss - Fosksr).

5. NON-DETERMINISTIC COMPUTATION
CASEIN mp>n SYSTEMS

We shall show another invalid (non-deterministic
singular computation) case in the sufficient condition
of generic SOF pole-assignment »p > », which
depends upon “the manner of selection” of pre-
assignable surplus variables of the degree freedom,
mp - n inthe equation Zk=a.

Example 2: In a generically SOF pole-assignable
system (of 3-input, 3-output, 8-th order, strictly proper
transfer function matrix G{(s)),

1 s+1.5
s (s-2)°
s+05 2(s-1
Gls) = | = g )
s°=3 sT+2
0 o L
| s+lJ

we shall show that certain (bad) selection of a pre-
assignable surplus variable in the degree freedom
-n =9 -8 =1 can yields non-deterministic
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(pathological) computation for real solutions !

(1) Construction of Grassmann space parameter
Z and OF gain vector 4 in /A = 4. By the same
way shown in Example 1, the SOF equation Z&= @ is
constructed by

[ 1]
k17
[ 1io o0 0 0 0 0 0 _0_0_ 0 0] 4
S 21 o o o o o o [lg,
2 i1 25 05 -4 -2 1 R N |
21-2 05 05 -6 0 -7 -2 15 -15 -6 1
S 2 25 05 16 2 <1035 0 -1 2 o - || ¥
sis 725 25 2 -7 025 2 15 25 16 -275 || ¥
615 =I5 1 -12 12 -75 -7 -6 0 -18 12 || %
616 -9 1 6 -6 -125 12 =9 1 6 -195 || &g
| o6 0o 0o 0o o 6 6 0 0 0 6 |4y
_/ kg
—~ .
Lsub S
F
a,
az
az
= |4 (15a)
as | ?
a5
az
L s |

kis=Kphess- kyskss
Kis= koihzz- Kok,

where &= kikoz- kyokos,
kis= kioksz- Kiakso,
Foo= keookss - Kasksa
Kirg= KpikooKs+ Kphoshsr + Kyakothss
- Kpikaskzs - Kyokoiksz - Riskooks (15b)

(2) Check a necessary condition of complete
pole-assignability. In rank test of the Plicker
submatrix 2,

rank I = 8.

(16)

Thus, a necessary condition of complete SOF pole-
assignability is satisfied.

(3) Check deterministic computation condition.
In (15a) and (15b), we should be careful that the 4

QRs,
Kia= Kiiksz - Kisksn,
Kig= hophzz - Koshisy,

kl’ﬁ = kIij’f - k/fkj%

Kig= Koohss - Koskss, (17a)0d

where the variables 4,3, 423, 43/, 43, are not exposed
in Zk= a in this degenerate system, can produce “non-
deterministic (singular) computation problem” for
obtaining real solutions. In other words, let

kishzr=cu, Kikio=os fosksr=as Kok =y (17b)

then these 4 equations provide (1-dimensional)
infinite number of solutions if «/a, = a/a, but
have no solutions if a/a, # a;/a, over arbitrary
values of ¢, a, a;, ay see Remark 4.

To avoid this non-deterministic computation case,
we should be careful to the selection manner of the
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Kilraz~7= o B
b good pre-assignable
area
; bad pre-assignable
k/j, 97 b /{'3_7 area

Fig. 3. Pre-assignable areas of a surplus gain-variable.

Table 1a. Number (#) of real solutions
in deterministic good pre-assignable area

Selection of
surplus gain k1 k2 k13 fezs
# Real 12 10 10 10
solutions
# C am{U/ex 12 1 A 0
solutions

Table 1b. Number (#) of real solutions
in nondeterministic bad pre-assignable area

Selection of
surplus gain k1 ko k12 k2 y 23
#R‘fal none 2 4 none 4
solutions
# Ce omfylex 12 g 6 o A
solutions

(For the numerical iterative computation, “NSolve” of
MATHEMATCA 5.0 is applied.)

pre-assignable surplus variables (which can get
arbitrary real values within the degree freedom »p — »
in the equation Z£= 4). From (17a) and (17b), in this
degenerate 3-input, 3-output system (which has “1”
surplus variables in the degree freedom 3x3 — 8 = 1),
we can easily discern the good pre-assignable area and
bad pre-assignable area for the selection of surplus
variable. See the Fig. 3 where the slash-shaded areas
indicate good pre-assignable areas for deterministic
computation and the dot-shaded area indicates bad
pre-assignable area of possible non-deterministic
(singular) computation.
Let the desired closed-loop system poles be set by

(-1,-1,-1,-1,-1, -1, -1, -1) € (s+1)®

for simplicity, and let any surplus gain-variable in the
degree freedom be set by 4= 1, then the numbers of
real solutions X in the 2 cases (of deterministic good
pre-assignable area and non-deterministic bad pre-
assignable area) are compared in Table la and Table
1b.

From the Tables, it is shown that over the SOF
equations in (15a) and (15b), the selection of surplus
variable in deterministic good pre-assignable area
produces sufjicient 70 ~ 12 real solutions, meanwhile
the selection in non-deterministic bad pre-assignable
area yields only deficient 0 ~ 4 real solutions.
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Remark 3: From (16), by inverse function theorem
[20}, the generic pole-assignability in #p > # and rank
L™ = p implies arbitrary pole-assignability /7 @ weak
sense that the desired real gain matrices K are
determined by arbitrary real coefficient vector @, but
which has only open small neighborhoods, as gpen
dense sets, to guarantee real gain matrices X from the
Definition 2).

Remark 4: We can easily check that the variety in
non-deterministic or 1-dimensional deterministic
computation case in (17b) is “singular” by Jacobian
(J) rank test over 4 eqns.(or generators), g,= 44z -
Qi 2= Risksz - Qs g5= Koshs - Qs Gy kashss - .
Hence it is obtained that derJ= |0(g/, £2 23, £/ 0423,
K23, k31, £37)] = 0]21, Theorem 12.2.20].

Remark 5: It is interesting to see in the iterative
numerical computation algorithm of “NSolve” in
MATHEMATCA 5.0 that in the non-deterministic
(singular) computation case of Table 1b, some
(complex and real) solutions still come out in place of
that #o solutions should be come out if algebraic
computation can be carried out.

6. m-DOF COMPENSATION FOR SOF NONE
POLE-ASSIGNABLE mp>n SYSTEM

6.1. Induction of new sufficient condition of generic
m-DOF pole-assignment

From the S.Q.R. in (3) and (4), a new sufficient
condition of generic m-DOF pole-assignment is
directly induced from the well-known sufficient
condition of generic SOF pole-assignment 7 > » by
X. Wang [15] as follows. Recall that previous best
sufficient condition of generic m-DOF pole-
assignment (which does not allow partial SOF) was

mp + dptm) —min{7,(p-1), 7, m-1)} > ntd

by Rosenthal and Wang in 1996 (where 7, = & —
m|dm] and 7, = d — p[dlp] are the remainders of &
divided by » and p, respectively)[22], and another
best sufficient condition of generic m-DOF pole-
assignment (which allows partial SOF) was

d=[(n - @)/ max{m, p}]

by S6ylemez and Munro in 2002 (where ¢ = max {»,
7+ Lmax{m, p}/ZJ + ...+ Lmax{m, pH/min{n, p}J
and | x] indicates the nearest integer lower than or
equal to x, and [ x | indicates the nearest integer greater
than or equal to x)[23]. For the definitions of complete
DOF pole-assignment and generic DOF pole-
assignment, refer to [13].

Theorem (induction of new sufficient condition of
generic m-DOF pole-assignment): In the #-input, p-
output, ~-th order linear strictly proper systems, new
sufficient condition of generic pole-assignment by

minimum &-th order DOF is induced by

(mtd)(p+d)> ntd and  rank L= mrd  (18a)
when &= 1, or is induced by

(nrd)(prd) > n+dt1 and rank L7 '= n+d+1 (18b)

when & > 2 (where 2“4 ¢ R " indicates first
column, and first row curtailed Pliicker submatrix of
L% apd L"%’e R"D* indicates first column
curtailed Pliicker submatrix of Z%¢ ¢ R/ 9@+

Proof: In m-input, p-output, »-th order linear
strictly proper systems, »p > # is sufficient condition
of generic pole-assignment by SOF [15,Theorem 4.1].
Applying the S.Q.R. in (3) and (4) [10,Theorem 1] to
mp > n, new sufficient condition of gereric pole-
assignment by minimum &-th order DOF is induced
by (mrtd)(p+d) > ntd or (mtd(p+d) > md+l
according to the strictly properness or properness of
the 1% order dynamic elements eAs), ... , es).

In [10,Lemma 3 and Lemma 4], it is proved that if
d =1, “strictly proper” dynamic element is allowable
without intrinsic column rank reduction of 2“4 but
if 4 = 2, “proper” dynamic elements should be
selected preventing intrinsic column rank reduction of
L7 Thus, in the case of &> 2, their augmented
SOF linear systems are to be “proper”.

Therefore, the new sufficient condition of generic
pole-assignment by minimum 4th order DOF
(without any none pole-assignability by rank
deficiency of Pliicker sub-matrices of £“*) is obtained
by (nt+d) (p+d) > ntd and rank L7*°= p+d when
&= 1, or obtained by (mtd)(ptd) > ntd+1 and rank
L7 = pr gt 1 when &2 2. O

From the Remark 3, it is natural question whether
the generic pole-assignment conditions by m-DOF in
(18a) and (18b) of this Theorem are also to be
complete pole-assignment conditions by m-DOF, or
not.

6.2. Construction algorithm of £“4 in 2™k = g™
From the S.QR. in (3) and (4), the (dynamic)
Grassmann space parameter 2°% in L7“f™ = g™
can be constructed in the very similar way with the
construction algorithm of (static) Grassmann space
parameter £ in Z&= a presented in Section 3.2.

Step 1: (Determine properness or strictly properness
of I" order dynamic elements e s), ..., ess) for
minimum d-th order DOF))

Step 2 ~ Step 5: Same procedures with the Step 1 ~
Step 4 in Section 3.2 (for the construction algorithm
of (static) Grassmann space parameter 7).

Example 3: In the SOF none pole-assignable
system in Example 1,
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B 2
—(3_31) 0 0
5
2
G(s) = 0 (§+_2) 0
s+ 2
0 0 ;+3
B $7+ 2_

let’s construct the m-DOF compensator H(s)"" for
pole-assignment in arbitrary pole positions (s+1)° = 0.

Step 1: Let 4 = 1, then (3+1)(3+1) > 8+1, ie.,
well-satisfied! Hence let’s set a 1% order “strictly
proper” dynamic element by

e(s) = 1/(s-2)

whose denominator’s value, s-2, is relative prime with
numerators and denominators with other transfer
functions. Then augmented transfer function matrix
G(s)™* of augmented linear systems is obtained by

A
(s+2)% o
G(s)™ = $S+2 . (19)
s+3
‘ sz+2 0
0 0 0 ﬁ |

Step 2 ~ Step 4: Same procedures with Step 1 ~
Step 3 shown in Example 1 for construction of L.

Step 5: Through Step 1 and Step 4, the Grassmann
space parameter L“¢ in L“®k“® = "¢ is constructed
by

[t o o o o o 0 0 _0_ 0 0 0 0 0 0 0]
—2!'1 1 1t 1 0o 06 0 0 o 0 0 0 0 0o o0
204 2 1 0 1 1 1 1 1 1 0 0 0 0 o
217 2 6 2 0 4 2 5 4 3 L 1 11 0
41-8 -4 2 2 -5 -7 3 2 6 0 3 2 1 7T |1
412 -8 2 0 2 15 -2 -20 8 2 -7 -1 -5 16 5
8110 216 -12 4 -2 -8 -2 -24 8 6 -19 0 5 12 3
0120 0 0 0 -4 -14 6 0 0 O 18 -2 2 0 -3
0'20 0 0 0 24 26 -8 0 0 0 28 -8 -10 0 -8

L ot8 0 0 o0 -6 12 4 0 0 0-24 8 6 0 12

Laugsub
M1 ]
1971
k22 o
k33 1
kg 9
kj 36
k2 84
k; 126
Pl= , (20a)
ki 126
kjs 84
ki 36
Ky 9
kjs L 1]
kjo
kiro
kirg

where the interacting gains k;;, . . ., kjo are deter-

mined by
Lk Ky _ ki ks ki kg
ki = k= » K = :
k12 k22 k13 k33 k]4 k44

ki = o (20b)

In the rank test of the Pliicker submatrix, it is
shown that

rank L™ *** = 9 (= p+d = 8+1).

Thus, the generic pole-assignment condition in (18a)
is satisfied !

6.3. Construction algorithm of m-DOF .

The m-DOF compensator (or controller) H(s)™ is
constructed through following further 3 steps of Step
6 ~ Step 8.

Step 6 (Pre-assignment of surplus variables for
stable poles of m-DOF):

From the induced sufficient condition (m+d) (p+d)
> n+d, the degree of gain-variable freedom is obtained
by

(mtd)(p+d) - (ntd) = 3+1)(3+1) - (8+1) = 7.
Hence from the general gain formula (G.GF.) in (6),
the pole of minimum 1% order DOF, H(s)"" can be
pre-assigned by the zero of an equation

1 = es)W(s) = 0,

where W,'(s)=kyy forall i,j=1,2,3.

Let the desired pole of H(s)™ be “~2” in LHP.
Then one surplus variable k&, is pre-assigned by “4”
from (s—2)—1-(—ky) = s+2.

Step 7 (Pre-assignment of other surplus variables
in good pre-assignable area):

Considering the good pre-assignable areas of
surplus gain-variables of 3-input, 3-output system in
Fig.3, the (possible) good pre-assignable areas of
surplus gain-variables in augmented 4-input, 4-output
system can be variously figured like Fig. 4(a), Fig.
4(b), ... , in below.

From Fig. 4(a) and Fig. 4(b), it is easily observed
that 6 gain-variables in any upper or lower triangular
position in the matrix K™ shall fully prevent any
non-deterministic (singular) computations. So we
shall pre-assign the variables in upper part by value
“1” like

(k31 ks2) = (1, 1) over (kys, k23, ksy, k32),
(ka2 kgs) = (1, 1) over (kag, ksy, ka2, ky3),
(k21, kap) = (1, 1) over (kiz, kg, k21, kar).
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kﬁ ks
(@)

Fig. 4. Various good pre-assignable areas in augmented
(3+1)-input, (3+1)-output system.

Applying “NSolve” in MATHEMATCA 5.0
software to the egns., L™*k“® = 4™ in (20a) and
correspondent NRs in (20b), the 26 number of real
solutions of K™% are obtained. Hence, a best solution
(which has lowest ratio between maximal values and
minimum values) is selected by

K3
2.790665812976755 1 1 1
| 3963140606380242  3.148255874359452 1 1
4314877112434576  2.741207399335048  1.061078312663792 1 |
~LI35732011608804  —1.7560%353809862 —2.845735498678207 4

@1
Step 8 (Construction of stable m-DOF'):
From the general gain formula (G.GF.) in (6), each
element of m-DOF, H(s)™" is constructed by
r
Hy ()" = kyy = | kg =7 kyy

1+

_2.790665812976755 5 + 6.717063637562314
s+2

>

1
Hpp ()™ = kyy =| kpg——F2— kg

1+ . kyy
~3.9631 40666380242 s +9.682364870859107
s+2 ’
i
Hy3 ()™ = kyz —| kyy —32 kg3
1 + E k44

_ 1.0610783126637924 5 + 4.967892124005791

s+2

In this way, the m-DOF, H(s)"™" for pole-
assignment of G(s) in arbitrary pole positions (s+1)
=0 is constructed by

Remark 7: This systematic construction algorithm
of m-DOF, H(s)™ under the frame of Grassmann
space parameter L™ in L™k™ = ¢™* is comparable
with the recent best parametric construction algorithm
by S6ylemez and Munro in 2002 [23] (which is less-
systematic than ours, without using the (basis—free
Grassmannian) SOF and m-DOF parameters, L and
L“8[11,Theorem4.1]). But this parametric construc-
tion algorithm still need further studies for practical
applications on following inquiries: /) Are the
sufficient conditions of generic pole-assignment in
Theorem in Section 6.1 also to be the sufficient
conditions of complete pole-assignment by SOF and
m-DOF ? 2) What are the sufficient conditions of
good pre-assignment of the surplus gain-variables in
the degree freedoms mp - n and (m+d)(p+d) -
(n+d) (or (m+d)(p+d) - (n+d+1))[21,24,25] ?

Remark 8: As seen in (21), the values of the m-
DOF for 3-input, 3-output system with 16 digit high
precision are impractical ones, and even the rigorous
values of 4 ~ 6 digit high precision do not assign the
system poles at the exact pole positions by heavy
nonlinear multiplications of the total 3™ order
interacting gains k7, , kjp and total 4" order
interacting gain k;;;. In other words, the real
coefficient parameters a®® (= L“*k™*) for the system
poles are so sensitive over the slight variations of OF
gains ki, ..., kyp, in MIMO systems. So we can say
that the SOF compensation in min{m, p} > 4 systems
and the m-DOF compensation in min{m, p} > 3
systems for pole-assignments under (Grassmannian)
full-rank feedback configuration are actually
impractical ones by the extremely vulnerable
sensitivity problem over their OF gains, as mentioned
in [8].

7. CONCLUSIONS

Major outcomes of this paper are summarized as
follows.

1) A general construction algorithm of the Grass-
mann space parameters (so-called, the Pliicker
matrices) “L” and “L“®” in Lk = a and L™k = 4™*
is presented, respectively, for numerical checking of
necessary conditions of complete pole-assignments
and for discernment of deterministic computation
conditions of real solutions in linear OF systems.

2) Through the construction of the Grassmann
space parameter L in Lk = a, it is shown that certain
generically SOF pole-assignable strictly proper mp >
n system is actually none pole-assignable over any

2.790665812976755 s+6.717063637562314 S+3.756083538098622 s+4.8457354986782075
s+2 s+2 s+2
H(S)mz‘n _ 3.963140666380242 s+9.682364870859107  3.14825587435%452 5-+8.052595286817526 s+4.8457354986782075
s+2 542 s+2 (22)

4314877112434576 5+9.765486236477956  2.741207399335048 5-+7.238498336768718  1.0610783126637924 5+4.967892124005791

s+2

s+2 s+2
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real and complex OF.

3) From 1), it is also shown in strictly proper linear
systems that deterministic or non-deterministic
(singular) computations of pole-assignable real OF
gain matrices K in Lk=a depend upon the selection
manner of the surplus gain-variables in the degree
freedom mp - n.

4) From 1), it is shown that the none pole-
assignable system by any real and complex OF in 2)
can be arbitrary pole-assignable system via (real) m-
DOF under full-rank of some submatrix of L** and
deterministic computation of the augmented real OF
gain matrices K¢ in L“®k™¢ = ™.

5) From 1), it is shown that a mathematical
interesting issue, concrete construction algorithm of
2"_order quadratic relations (QRs) as the Grassmann
variety in Pliicker coordinates [16-18] can be deduced
from arbitrary-order nonlinear relations (NRs) in the
case of SOF linear systems — which relations are
formulated by all kinds of NxN sub-determinants of
mxp SOF matrix K (where N = 2, ... , min{m, p})
(see the Remark 1 and Remark 2).

APPEDIX A
(Terminologies related with Grassmannian)
Grassmann space. Consider the set of all complex
d-dimensional planes in C". These can be identified
with equivalent classes [x] (:= [x', ... , x7]) of (d-1)-
dimensional linearly independent planes in C", where
d-pairs {(x11, le, ,x,,'), ey (x]d, xzd, ,x,,d)}
being equivalent with {(yjl,yzl, ,ynl), e (y,d, yzd,
.., ¥2)} are regarded as being equivalent if they span
the same d-dimensional subspace. This set of d-
dimensional subspaces is called Grassmannian (or
also, Grassmann space), Grass(d, n). -
Grassmann variety in Pliicker embedding. The
Grassmann space can be thought of as a generalization
of projective space. And also we can consider a map
(called Pliicker map) which sends a d-dimensional
plane (simply, d-plane) n = C{v;, ... , vg} < C" to
multivector v; A ... Avy like
p: GmssSd, n — PRIC)=P°

(where 6=(")-1). This map p has nonzero

differential and is known embedding. The image of
this map is provided by certain equations called
quadratic Pliicker relations(QRs), and the algebraic
projective variety of these equations are named by
Grassmann variety, and the coordinates in the
projective space P° are named by Pliicker coordinates
(or Grassmann coordinates).

Schubert condition and Schubert variety. Let Ay C
Ay ... c Ay be a strictly increasing sequence(or
flag) of (d+1) linear spaces in P". A d-plane L in P" is
said to satisfy the Schubert condition defined by this
sequence if dim(L n A4;) < i for all i. The set of all
such d-planes L corresponds to a subset of Grass(d, n),

which is denoted by (4, 4,,
variety.

Grassmann representative. If W is any nonzero m-
dimensional subspace of V, then any nonzero decom-
posable element (in the exterior product of m vectors
in 1),

XIA e AXpy, X €W, i=1,...,m
is called a Grassmann representative for W.

.., Ay) called Schubert

APPENDIX B (Binet-Cauchy theorem)
Suppose 4 € M, ,(F), B € M,,(F),andC = 4B €
M, A(F).
If 1 <7 < min{nmp}, acQ,,= (f),

and fe O, = (),
then, det(C[a}G]) = Y det(A[aIw])det(BWco])

cer,’ »
(where C[ & f] indicates submatrix of C lying in rows

a and columns S, and Q,, indicates totality of strictly
increasing sequences of » integers chosen from 1, ...

p) [17].

APPENDIX C (Proof of Lemma 2)
The total number T of all NXN submatrices (where
N=1, ..., min{m, p}) in a mxp matrix is described
by (A.1a), and is computed by (A.1b) as follows:

min{m, p}
T = ) (%)x(%) (A.1a)
- (m;“np) S (A.1b)

The equality between (A.la) and (A.1b) is derived
from following rationale.

Consider all NxN submatrices by “all combinative
selected sets” of N number of rows (1, 2, ...) and N
number of columns (1, 2', ... ) in the (m+p) number
ofset, {1,2,...,m; 1',2', ..., p'¥(where N=1, ...,
min{m, p}).

i) m < p case: See the Fig. A.1 below. In thin
rectangular enclosure, a selection of set, {4, ..., m; 1/,
2', 3’} is equally counted by the selection of set, {1, 2,
3; 1, 2’, 3’} which implies a 3x3 submatrix. And in
thick rectangular enclosure, a selection of set, {3, ...,
m-1; 3', (p-2Y, p'} is equally counted by the selection
of set, {1,2, m; 3', (p-2)', p'} of a 3x3 submatrix.

In this way, all NxN submatrices are selected by

all combinative selections of m number of set in

2 l3l4mt [min 2 3|| o Ap2l p1] o
1
]

Fig. A.1. Two (kinds of) selections for 3x3 submatrices.
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the (m+p) number of set, {1,2, ... ,m; 1',2', ..., p'},
except only one selection of set {1, 2, ... , m} which
does not formulate a submatrix.

if) p < m case: By the same way with ), one can
select all ANxN submatrices by all combinative
selections of p number of set in the (m+p) number
of set, {1,2,...,m; 1,2, ..., p'}, except only one
selection of set {1’, 2, ... , p’} which does not
formulate a submatrix.

The outcomes of i) and ii) prove the equality
between (A.la) and (A.lb). Therefore, the total
number » of all NxN submatrices (where N=2, ...,
min{m, p})ina mxp matrix is obtained by

+
r=[m p)—mp—l. O
m
REFERENCES
[1] C. 1. Byrmes, “Pole-assignment by output

feedback,” Lecture Notes in Control and Infor.
Siences, vol. 135, pp. 31-78, Spring-Verlag,
Berlin, Heideberg, New York, 1989.

[2] D. S. Bernstein, “Some open problems in matrix
theory arising in linear systems and control,”
Linear Algebra and its Applications, pp. 409-
432, 1992.

[31 H. Kimura, “Pole assignment by output
feedback: A longstanding open problem,” Proc.
of Conf. Decision Control, vol. 12, pp. 2101-
2105, 1994.

[4] V. Blondel, M. Gevers, and A. Linquist, “Survey
on the state of systems and control,” EFuropean J.
Control, vol. 1, pp. 5-23, 1995.

[5] V. L. Syrmos, C. Abdallah, P. Dorato, and K.
Grigoriadis, “Static output feedback: A survey,”
Automatica, vol. 33, pp. 125-137, 1997.

[6] J. Rosenthal and J. C. Willems, “Open problems
in the area of pole placement,” Open problems in
mathematical systems and control (Blondel,
Sontag, Vidyasagar and Willems(Eds): Springer),
vol. 37, pp. 181-191, 1999.

[7] R. Hermann and C. F. Martin, “Application of
algebraic geometry to system theory. Part-I,”
IEEE Trans. on Automatic Control, vol. 22, pp.
19-25, 1977.

[8] Y. Yang and A. L. Tits, “Generic pole assignment
may produce very fragile designs,” Proc. of the
37rd conf. on Decision and Control, Tampa, FL,
USA, pp. 1745-1746, 1998.

[9] L. Carotenuto, G. Franze, and P. Muraca, “Some

results on the genericity of the pole assignment -

problem,” System and Control Letters, vol. 42,
pp- 291-298, 2001.

[10] S.-W. Kim, “Mismatching problem between
generic pole-assignabilities by static output
feedback and dynamic output feedback in linear
system,” International Journal of Control,

Automation, and System, vol. 3, no. 1, pp. 56-69,
2005.

[11] C. Giannakopoulos and N. Karcanias, “Pole
assignment of strictly and proper linear system
by constant output feedback,” International
Journal of Control, vol. 42, pp. 543-565, 1985.

{12] N. Karcanias and C. Giannakopoulos, “Grassmann
invariants, almost zeros and the determinantal
zeros, pole assignment problems of linear
multivariable systems,” International Journal of
Control, vol. 40, pp. 673-698, 1984.

[13] J. C. Willems and W. H. Hesselink, “Generic
properties of the pole assignment problem,”
Proc. TFAC, Helsinki, Finland, pp.1725-1729,
1978.

[14] A. S. Morse, W. A. Wolovich, and B. D. O.
Anderson, “Generic pole assignment: Preliminary
results,” IEEE Trans. on Automatic Control, vol.
28, no. 4, pp. 503-506, 1983.

[15] X. Wang, “Pole placement by static output
feedback,” Journal of mathematical systems,
Estimation and Control, vol. 2, no. 2, pp. 205-
218, 1992,

[16] J. V. Chipalkatti, “Notes on Grassmannians and
Schubert varieties,” Queen’s papers in Pure
and Applied Math. 13, no. 119, 2001.

[17] M. Marcus and H. Minc, 4 Survey of Matrix
Theory and Matrix Inequalities, Dover Publica-
tions, Inc., 1969.

[18] S. L. Kleiman and D. Laksov, “Schubert
calculus,” America Math. Monthly, vol. 79, pp.
1061-1082, 1972.

[19] A. G. J. McFarlane and N. Karcanias, “Pole and
zeros of linear multivariable systems: The
algebraic, geometric and complex-variable
theory,” International Journal of Control, vol. 24,
pp. 33-74, 1976.

[20] M. W. Hirsch, Differential Topology, Springer-
Verlag, 1980.

[21] S. Billey and V. Lakshmibai, Singular Loci of
Schubert Varieties, Birkhiuser, 2000.

[22] J. Rosenthal and X. Wang, “Output feedback
pole placement with dynamic compensators,”
IEEE Trans. on Automatic Control, vol. 41, pp.
830-843, 1996.

[23] M. T. S6ylemez and N. Munro, “A parametric
solution to the pole assignment using dynamic
output feedback,” IEEE Trans. on Automatic
Control, vol. 46, pp. 711-723, 2001.

[24] B. Huber and J. Verschelde, “Pieri homotopies
for problems in enumerative geometry applied to
pole placement in linear systems control,” SIAM
J. Contr. Opt., vol. 38, pp. 1265-1287, 2000.

[25] S. Billey and A. Postnikov, “Smoothness of
Schubert varieties via patterns in root
subsystems,” Advances in Applied Mathematics,
vol. 34, pp. 447-466, 2005.



Construction Algorithm of Grassmann Space Parameters for Linear Output Feedback Systems 443

Su-Woon Kim received the B.S.
degree in Electrical Engineering (with
submajor in Industrial Education) in
1974 and M.S. degree in Electrical
Engineering in 1979, respectively
- from Seoul National University. He
| served as an instructor from 1980 to
& 1983 in Ulsan University, and received
Ph.D. degree in Control Science and
Dynamic Systems from University of Minnesota,
Minneapolis in 1996, and then engaged in post-doctoral
research at the same school. Since 2003, he has been with
Department of Electrical Engineering at Cheju National
University. His research interests include mathematical
system theory and linear system theory (especially, related
problems with pole-assignment and stabilization).




