• 제목/요약/키워드: 3-D flow analysis

Search Result 1,514, Processing Time 0.032 seconds

Aero-acoustic Performance Pprediction Method and Parametric Studies of Axial Flow Fan (축류 홴의 공력-음향학적 성능 예측방법 및 매개변수 연구)

  • Lee, Chan
    • Journal of KSNVE
    • /
    • v.6 no.5
    • /
    • pp.661-669
    • /
    • 1996
  • Proposed is an aero-acoustic performance prediction method of axial fan. The fan aerodynamic performance is predicted by combining pitch-averaged quasi 3-D flow analysis with pressure loss models for blade boundary layer and wake, secondary flow, endwall boundary layer and tip leakage flows. Fan noise is assumed to be radiated as dipole distribution type, and its generation is assumed to be mainly due to the vortex street shed from blade trailing edge. The fluctuating pressure and lift on the blade surface are analyzed by incorporating the wake vortex stree shed from blade trailing edge. The fluctuating pressure and lift on the blade surface are analyzed by incorporating the wake vortex street model with thin airfoil theory. The aero-acoustic performance prediction results by the present method are in good agreement with the measured results of several axial fans. With the present prediction method, parametric studies are carried out to investigate the effects of blade chord length and spacing on the efficiency and the noise level of fan. In the case of lightly loaded fan, both efficiency improvement and noise reduction can be achieved by decreasing chord length or by increasing blade specing. However, when fan is designed at highly loaded condition, the noise reduction by increasing blade spacing penalizes the attaninable efficiency of fan.

  • PDF

A Study on a Perfomance Analysis of the Centrifugal Pump Impeller using CFD (CFD에 의한 원심펌프 임펠러 성능해석에 관한 연구)

  • 남구만;모장오;강신정;임효남;이영호
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.89-94
    • /
    • 2002
  • A commercial CFD code is used to calculate the 3-D viscous flow field within the centrifugal pump impeller. Design conditions are changed by impeller inlet(9.3mm, 12.2mm) and outlet breadth(6.65mm, 6.85mm). Numerical calculation was performed by changing flow rate from 8 to 26m$^{3}$/hr. Computation results shows that total head is increased at the larger inlet and outlet breadth than the others. And when the flow rate is increasing, the total head was decreased. The maximum efficiency of pump is shown at the design flow rate(16m$^{3}$/hr). In this study shows that the calculated results are good agreements with analysis results of design condition.

  • PDF

Analysis of PIG Dynamics through Curved Section in Natural Gas Pipeline (천연가스 배관 곡관부에서의 피그 동적 거동 해석)

  • Kim D. K.;Nguyen T. T.;Yoo H. R.;Rho Y. W.;Kho Y.T.;Kim S. B.
    • Journal of the Korean Institute of Gas
    • /
    • v.6 no.1 s.17
    • /
    • pp.1-9
    • /
    • 2002
  • This paper presents simple models for flow and the PIG dynamics when it passes through a $90^{\circ}$ curved section of pipeline. The simulation has been done with two different operational boundary conditions. The solution fur non-linear hyperbolic partial equations for flow is given by using MOC. The Runge-Kuta method is used to solve the initial condition equation fur flow and the PIG dynamics equation. The simulation results show that the proposed model and solution can be used fur estimating the PIG dynamics when the pig runs in the pipeline including curved section. In this paper, dynamic modeling and its analysis for the PIG flow through $90^{\circ}$ curved pipe with compressible and unsteady flow are studied. The PIG dynamics model is derived by using Lagrange equation under assumption that it passes through 3 different sections in the curved pipeline such that it moves into, inside and out of the curved section. The downstream and up stream flow dynamics including the curved sections are solved using MOC. The effectiveness of the derived mathematical models is estimated by simulation results fur a low pressure natural gas pipeline including downward and upward curved sections. The simulation results show that the proposed model and solution can be used for estimating the PIG dynamics when we pig the pipeline including curved section.

  • PDF

Numerical Study on Flow Characteristics at Blade Passage and Tip Clearance in a Linear Cascade of High Performance Turbine Blade

  • Myong, Hyon-Kook;Yang, Seung-Yong
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.606-616
    • /
    • 2003
  • A numerical analysis has been conducted in order to simulate the characteristics of complex flow through linear cascades of high performance turbine blade with/without tip clearance by using a pressure-correction based, generalized 3D incompressible Wavier-Stokes CFD code. The development and generation of horseshoe vortex, passage vortex, leakage vortex, tip vortex within tip clearance, etc. are clearly identified through the present simulation which uses the RNG k-$\varepsilon$ turbulent model with wall function method and a second-order linear upwind scheme for convective terms. The present simulation results are consistent with the generally known tendency that occurs in the blade passage and tip clearance. A 3D model for secondary and leakage flows through turbine cascades with/without tip clearance is also suggested from the present simulation results, including the effects of tip clearance height.

Numerical Evaluation of 2nd Derivatives of the Potential in the Panel method for the Unsteady Potential Flow Problem (비정상 포텐셜 유동의 패널법 해석에서 포텐셜의 2차 미분값의 수치계산)

  • 양진호;전호환
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.3
    • /
    • pp.41-45
    • /
    • 2000
  • In solving the unsteady potential flow problem of the ship in waves with the panel method, in general one can consider the basic flow as the free stream or double body solution. For the double body solution, the body boundary condition has the 2nd derivatives of the velocity potential. Low order panel methods are known to suffer from the significant error in the 2nd derivatives computed at the body surface. This paper analyzes the numerical error in the 2nd derivatives for a 2-D cylinder and a 3-D sphere problem, and an extrapolation method to obtain the correct derivatives on the body surface is suggested.

  • PDF

SPIV Flow Analysis of Turbulent Jet with Triangular Multi-Tabs (삼각형 멀티 탭이 부착된 난류제트에 대한 SPIV 유동해석 연구)

  • Jang Young Gil;Lee Sang Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.5 s.236
    • /
    • pp.561-567
    • /
    • 2005
  • The effect of triangular multi-tabs attached at the perimeter of jet nozzle on flow structure in the near field was investigated experimentally. A stereoscopic PIV(SPIV) system was employed to measure three orthogonal velocity components of the 3-D turbulent jet. In this study, two different types of sharp-edged jet nozzle having 4, 8 tabs were tested at the Reynolds number of Re=10,000. SPIV measurements were carried out at 5 cross-sectional planes. Six hundred instantaneous velocity fields were measured for each experimental condition and they were ensemble averaged to get spatial distributions of turbulent statistics such as mean velocity and turbulence intensity. Entrainment rate of surrounding fluid into the tabbed jets was estimated using the measured 3-D velocity field data. The strong vortex structure was induced for the jet flow with 4 tabs, increasing entrainment rate.

DESIGN OF AXIAL FLOW HYDRAULIC TURBINE USING CFD APPROACH: STUDY OF TURBINE PERFORMANCE ACCORDING TO THE NUMBER OF RUNNER BLADE (CFD를 이용한 축류 유체 터빈 설계: 블레이드 수에 따른 성능 연구)

  • Lim, H.S.;Kim, S.W.;Baek, J.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.561-566
    • /
    • 2011
  • In this paper, 1-D design of axial flow hydraulic turbine including runner blades, spiral casing with distributors(guide vanes and stay vane), and draft tube was conducted and then 3-D flow analysis was carried out using CFX-12.1. The results of 3 runners showed that with an increase in the number of blades, the flow rate and the power of the turbine system increased. On the other hand. the runner loss was not directly connected with the number of blades. As a result, proper blade number could be selected and more than 100kW small hydraulic turbine could be designed.

  • PDF

The Corrective Heuristic Algorithm Analysis of the N$\times$3 Flow-shop Problem and Comparative Study with Multi-model (N$\times$3 Flow-shop 문제에 대한 수정된 발견적기법 분석과 기존기법과의 비교연구)

  • 강석호;궁광호
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.6 no.2
    • /
    • pp.13-19
    • /
    • 1981
  • This paper developed 3 flow-shop sequencing heuristic methods: modified RA method, modified RACS method and modified RAES method. These methods modified RA method, RACS method and RAES method developed by D. G. Dannenbring. These methods can easily determine desirable sequence of orders and can improve nx3 flow-shop's productivity and efficiency. The maximum flow-time criterion is selected as the evaluation criterion of flow-shop's efficiency, We evaluated these 6 heuristic methods’ performance. By the evaluation of the result, we can see that the modified methods produce a shorter maximum flow-time than the original methods.

  • PDF

Numerical Flow Analysis of Propeller Type Pump (프로펠러식 펌프의 전산 유동 해석)

  • Yu, Hye-Ran;Park, Warn-Gyu
    • The KSFM Journal of Fluid Machinery
    • /
    • v.9 no.6 s.39
    • /
    • pp.29-34
    • /
    • 2006
  • Propeller type pump has been widely used for pumping water in agricultural and manufacturing industry. Since a propeller type pump contains a screw impeller inside a circular casing, the numerical analysis becomes complex. However, the accurate prediction of viscous flow is essential for computing hydrodynamic performances. To analysis the flow and the performance of the propeller type pump, the present work has solved 3D incompressible RANS equations on the multiblocked grid. From the present calculation, small amount of flow separation was shown near hub and the flow was recovered to nearly uniform inflow after one diameter downstream. Torque and thrust coefficient were computed and compared with experiments.

Numerical Analysis on the Development of a Ventilation Opening Louver for Marine (선박용 환기구 루버 개발을 위한 수치해석)

  • Yi, Chung-Seob;Chin, Do-Hun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.1
    • /
    • pp.30-35
    • /
    • 2017
  • This study is about distributions of flow in a ventilation system used in a louver for marine. In this study, to describe the flow in the ventilation opening louver, 3-dimensional steady-state turbulence was assumed to govern the equation. The flow field with pressure distribution according to the inlet velocity at the louver types is also compared. Flow analysis was performed for the louver numerical analysis on two types. The numerical analysis results in the louver blade indicated increased flow resistance at type-1.